A1

(1981)

(Rev.4

(Rev.5

Aug 1999)

Jun 2005) (Rev.6

Oct 2016)

Dec 2016)

Sep 2020)

June 2023)

(Corr.1

(Corr.2 Mar 2017)

(Rev.7

(Corr.1 Sep 2021)

(Rev.8

(Rev.1 1987)

(Rev.2 1992) (Rev.3 1994)

Anchoring Equipment

A1.1 Design of the anchoring equipment

A1.1.1 The anchoring equipment required herewith is intended for temporary mooring of a ship within a harbour or sheltered area when the ship is awaiting berth, tide, etc. IACS Recommendation No. 10 'Anchoring, Mooring and Towing Equipment' may be referred to for recommendations concerning anchoring equipment for ships in deep and unsheltered water.

A1.1.2 The equipment is therefore not designed to hold a ship off fully exposed coasts in rough weather or to stop a ship which is moving or drifting. In this condition the loads on the anchoring equipment increase to such a degree that its components may be damaged or lost owing to the high energy forces generated, particularly in large ships.

A1.1.3 The anchoring equipment required herewith is designed to hold a ship in good holding ground in conditions such as to avoid dragging of the anchor. In poor holding ground the holding power of the anchors is significantly reduced.

A1.1.4 The Equipment Number (EN) formulae for anchoring equipment as given in A1.2 and A1.3 are based on an assumed maximum current speed of 2.5 m/s, maximum wind speed of 25 m/s and a minimum scope of chain cable of 6, the scope being the ratio between length of chain paid out and water depth. For ships with an equipment length, as defined in Note 4 of A1.2, greater than 135 m, alternatively the required anchoring equipment can be considered applicable to a maximum current speed of 1.54 m/s, a maximum wind speed of 11 m/s and waves with maximum significant height of 2 m.

A1.1.5 It is assumed that under normal circumstances a ship uses only one bow anchor and chain cable at a time.

A1.1.6 Manufacture of anchors and anchor chain cables is to be in accordance with UR W29 and UR W18.

A1.1.7 In addition to planned anchoring for normal operations, anchoring equipment is also important for ship safety in emergency situations such as loss of manoeuvrability, unscheduled repairs and other unexpected situations.

A1.1.8 The anchoring equipment required herewith applies to self-propelled vessels over 100GT, except for:

- (a) inland navigation vessels,
- (b) military vessels,
- (c) government ships operated for non-commercial purposes.
- (d) high speed and light crafts,
- (e) <u>yachts</u>

<u>A1.1.9</u> The anchoring equipment required herewith applies to vessels with unrestricted service. The requirements given in A1.4.3, A1.4.4, A1.4.5, A1.4.6, A1.5.2, A1.5.3, A1.6, A1.7 apply to vessels with restricted service area.

A1.1.10 Unrestricted service means a vessel engaged on international voyages, and not bounded by any limitations on operating environment reflected in vessel class notation.

Note:

- 1. Rev.5 of this UR is to be uniformly implemented by IACS Societies on anchors and anchor chain cables the manufacturing of which is commenced on or after 1 January 2007.
- 2. Rev.6 of this UR is to be uniformly implemented by IACS Societies on ships contracted for construction on or after 1 July 2018.
- 3. The "contracted for construction" date means the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. For further details regarding the date of "contract for construction", refer to IACS Procedural Requirement (PR) No. 29.
- 4. Rev.7 of this UR is to be uniformly implemented by IACS Societies on ships contracted for construction on or after 1 January 2022.
- 5. Rev.8 of this UR is to be uniformly implemented by IACS Societies on ships contracted for construction on or after 1 July 2024.

A1.2 Equipment number and anchoring equipment table

A1 (cont)

A1.2.1 The equipment of anchors and chain cables for ships of unrestricted service is to be as given in Table 1 and is to be based on an 'Equipment Number' (EN) calculated as follows:

$$EN = \Delta^{\frac{2}{3}} + 2.0 \ (hB + S_{fun}) + \frac{A}{10}$$

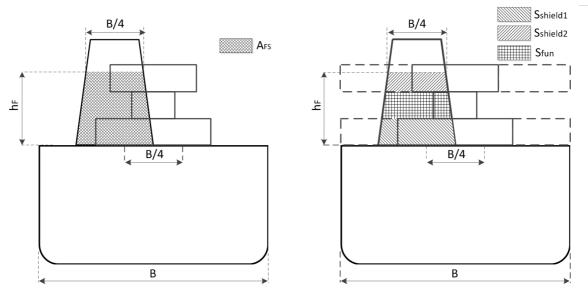
where:

- Δ = moulded displacement, in t, to the Summer Load waterline,
- B = moulded breadth, in m,
- h = effective height, in m, from the Summer Load waterline to the top of the uppermost house;

$$h = a + \sum h_i$$

- a = vertical distance at hull side, in m, from the Summer Load waterline amidships to the upper deck,
- h_i = height, in m, on the centreline of each tier of houses having a breadth greater than B/4; for the lowest tier h_1 is to be measured at centreline from the upper deck or from a notional deck line where there is local discontinuity in the upper deck, see figure below for an example,
- S_{fun} = effective front projected area of the funnel, in m², defined as:

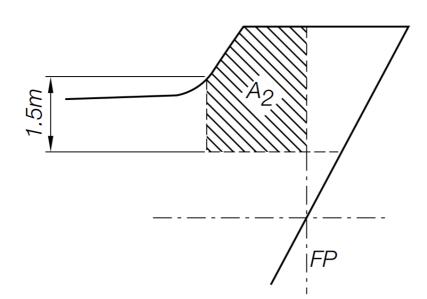
$$S_{fun} = A_{FS} - S_{shield}$$


A_{FS} = front projected area of the funnel, in m², calculated between the upper deck at centreline, or notional deck line where there is local discontinuity in the upper deck, and the effective height h_F.

 A_{FS} is taken equal to zero if the funnel breadth is less than or equal to B/4 at all elevations along the funnel height.

- h_F = effective height of the funnel, in m, measured from the upper deck at centreline, or notional deck line where there is local discontinuity in the upper deck, and the top of the funnel. The top of the funnel may be taken at the level where the funnel breadth reaches B/4.
- S_{shield} = the section of front projected area A_{FS} , in m², which is shielded by all deck houses having breadth greater than B/4. If there are more than one shielded section, the individual shielded sections i.e $S_{shield1}$, $S_{shield2}$ etc as shown in figure 2 to be added together. To determine S_{shield} , the deckhouse breadth is assumed B for all deck houses having breadth greater than B/4 as shown for $S_{shield1}$, $S_{shield2}$ in figure 2.
- A = side projected area, in m², of the hull, superstructures, houses and funnels above the Summer Load waterline which are within the equipment length of the ship and also have a breadth greater than B/4. The side projected area of the funnel is considered in A when A_{FS} is greater than zero. In this case, the side projected area of the funnel should be calculated between the upper deck, or notional deck line where there is local discontinuity in the upper deck, and the effective height h_F.

h_F Considered side projected area of funnel(s) h_F Notional deck line h₁ Upper deck at CL Summer Load waterline



Notes:

A1 (cont)

- 1. When calculating h, sheer and trim are to be ignored, i.e. h is the sum of freeboard amidships plus the height (at centreline) of each tier of houses having a breadth greater than B/4.
- 2. If a house having a breadth greater than B/4 is above a house with a breadth of B/4 or less, then the wide house is to be included but the narrow house ignored.
- 3. Screens or bulwarks 1.5 m or more in height are to be regarded as parts of houses when determining h and A. The height of the hatch coamings and that of any deck cargo, such as containers, may be disregarded when determining h and A. With regard to determining A, when a bulwark is more than 1.5 m high, the area shown below as A₂ is to be included in A.

- 4. The equipment length of the ship is the length between perpendiculars but is not to be less than 96% nor greater than 97% of the extreme length on the Summer Load waterline (measured from the forward end of the waterline).
- 5. When several funnels are fitted on the ship, the above parameters are taken as follows:
 - h_{F} : effective height of the funnel, in *m*, measured from the upper deck, or notional deck line where there is local discontinuity in the upper deck, and the top of the highest funnel. The top of the highest funnel may be taken at the level where the sum of each funnel breadth reaches B/4.
 - A_{FS} : sum of the front projected area of each funnel, in m^2 , calculated between the upper deck, or notional deck line where there is local discontinuity in the upper deck, and the effective height h_{F} .

 A_{FS} is to be taken equal to zero if the sum of each funnel breadth is less than or equal to B/4 at all elevations along the funnels height.

A: Side projected area, in m^2 , of the hull, superstructures, houses and funnels above the Summer Loadwaterline which are within the equipment length of the ship. The total side projected area of the funnels is to be considered in the side projected area of the ship, A, when A_{FS} is greater than zero. The shielding effect of funnels in transverse direction may be considered in the total side projected area, i.e., when the side projected areas of two or more funnels fully or partially overlap, the overlapped area needs only to be counted once.

A1.2.2 The total length of chain given in Table 1 - col. 4 - is to be divided in approximately equal parts between the two bower anchors.

A1.2.3 For ships of restricted service, the equipment is to be provided at the discretion of the Society.

Extra special

quality Gr. 3

(mm)

20.5

Stud link chain cable for

Table 1 Anchoring equipment

A1 (cont)

	anc	hors		bower anchors			
					Min. diar	neter	
EN*	No.	Mass per anchor	Total length	Mild steel Gr. 1	Special quality Gr. 2	Extra q (
		(kg)	(m)	(mm)	(mm)	(
1	2	3	4	5	6		
205-240	2	660	302.5	26	22		
240-280	2	780	330	28	24		
280-320	2 2	900	357.5	30	26		
320-360	2	1020	357.5	32	28		
360-400	2	1140	385	34	30		
400-450	2	1290	385	36	32		
450-500	2	1440	412.5	38	34		
500-550	2	1590	412.5	40	34		
550-600	2	1740	440	42	36		
600-660	2	1920	440	44	38		
660-720	2	2100	440	46	40		
720-780	2	2280	467.5	48	42		
780-840	2	2460	467.5	50	44		
840-910	2	2640	467.5	52	46		
910-980	2	2850	495	54	48		
980-1060	2	3060	495	56	50		
1060-1140	2	3300	495	58	50		
1140-1220	2	3540	522.5	60	52		
1220-1300	2	3780	522.5	62	54		
1300-1390	2	4050	522.5	64	56		
1300-1390	2	4050	522.5	64	56		

Page 6 of 18

577.5

577.5

577.5

632.5

632.5

632.5

687.5

687.5

687.5

1390-1480

1480-1570

1570-1670

1670-1790

1790-1930

1930-2080

2080-2230

2230-2380

2380-2530

2530-2700

2700-2870

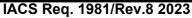
2870-3040

3040-3210

3210-3400

3400-3600

3600-3800


3800-4000

4000-4200

4200-4400

4400-4600

Stockless bower

	Stockles ancl	s bower hors		Stud link chain cable for bower anchors			
					Min. dian	neter	
EN*	No.	Mass per anchor	Total length	Mild steel Gr. 1	Special quality Gr. 2	Extra special quality Gr. 3	
		(kg)	(m)	(mm)	(mm)	(mm)	
1	2	3	4	5	6	7	
4600-4800	2	14100	715	120	105	92	
4800-5000	2	14700	742.5	122	107	95	
5000-5200	2	15400	742.5	124	111	97	
5200-5500	2	16100	742.5	127	111	97	
5500-5800	2	16900	742.5	130	114	100	
5800-6100	2	17800	742.5	132	117	102	
6100-6500	2	18800	742.5		120	107	
6500-6900	2	20000	770		124	111	
6900-7400	2	21500	770		127	114	
7400-7900	2	23000	770		132	117	
7900-8400	2	24500	770		137	122	
8400-8900	2	26000	770		142	127	
8900-9400	2	27500	770		147	132	
9400-10000	2	29000	770		152	132	
10000-10700	2	31000	770			137	
10700-11500	2	33000	770			142	
11500-12400	2	35500	770			147	
12400-13400	2	38500	770			152	
13400-14600	2	42000	770			157	
14600-16000 * Recommendation	2	46000	770			162	

A1.2.4 For ships of length less than 90m, alternative methodology using direct force calculation for anchoring equipment described in appendix B of Rec 10 may be used.

A1.3 Anchoring equipment for tugs and dredgers

(cont) A1.3.1 Equipment for tugs

For tugs of unrestricted service the equipment is to be provided in compliance with the present requirement.

However, for determination of the Equipment Number, in the formula given in A1.2, the following may be substituted for the term 2.0 hB

$$2.0(aB+\sum h_ib_i)$$

where

Δ1

a, B and h_i are defined in A1.2 and b_i is the breadth, in m, of the widest superstructure or deckhouse of each tier having a breadth greater than B/4.

For tugs under 45 m in length intended for towing service only, one anchor may be used onboard provided that the second anchor and its relevant chain cable holds readily available to be installed. In case of loss of anchor, the tug is to remain in port until replace anchor equipment is installed onboard.

For tugs of restricted service the equipment is to be provided at the discretion of the Society.

A1.3.2 Equipment for dredgers

For dredgers of unrestricted service having normal ship shape of underwater part of the hull the anchoring equipment is to be provided in accordance with this Unified Requirement.

When calculating the Equipment Number bucket ladders and gallows are not to be included. If however a dredger has unusual design of the underwater part of the hull, the Society is free to modify the requirements to anchoring equipment.

For dredgers of limited service, the equipment is to be provided at the discretion of the Society.

Dredgers with unusual design of the underwater part of the hull are not covered by alternative methodology using direct force calculation for anchoring equipment described in appendix B of Rec. 10.

A1.4 Anchors

(cont) A1.4.1 Types of anchors

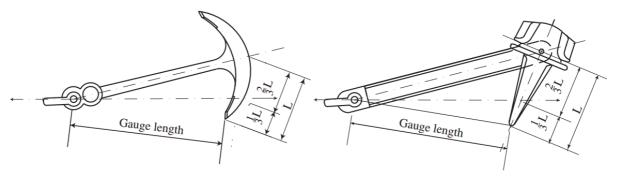
A1.4.1.1 Ordinary stockless anchors

- (a) Ordinary anchors of 'stockless' type are to be generally adopted and they are to be of appropriate design in compliance with the rules or practice of the Society.
- (b) The mass of the heads of stockless anchors including pins and fittings are not to be less than 60% of the total mass of the anchor.
- (c) The mass, per anchor, of bower anchor given in Table 1 is required for anchors of equal mass. The mass of individual anchors may vary to 7% of the Table mass provided that the total mass of anchors is not less than that required for anchors of equal mass.
- A1.4.1.2 High Holding Power (HHP) anchors
- (a) A 'high holding power' anchor is an anchor with a holding power of at least twice that of an ordinary stockless anchor of the same mass. A HHP anchor is to be suitable for ship's use and is not to require prior adjustment or special placement on the sea bottom.
- (b) When special type of anchors designated 'high holding power anchor' of proven superior holding ability are used as bower anchors, the mass of each anchor may be 75% of the mass required for ordinary stockless bower anchors in the Table 1.
- (c) For approval and/or acceptance as a HHP anchor satisfactory full scale tests according to A1.4.2 are to be made confirming that the anchor has a holding power of at least twice that of an ordinary stockless anchor of the same mass.
- A1.4.1.3 Super High Holding Power (SHHP) anchors
- (a) A 'super high holding power' anchor is an anchor with a holding power of at least four times that of an ordinary stockless anchor of the same mass. A SHHP anchor is suitable for restricted service ships' use and does not require prior adjustment or special placement on the sea bottom.
- (b) The use of SHHP anchors is limited to restricted service ships as defined by the Society.

The SHHP anchor mass is generally not to exceed 1500kg.

- (c) The requirement for design of SHHP anchors applies down to EN ≥ 205. For EN < 205 the design criteria for SHHP anchors apply to the anchor mass given in Recommendation No. 10 for ordinary stockless anchors, reduced as permitted in accordance with 1.1 (c) of Recommendation No. 10.</p>
- (d) When super high holding power anchors of the proven holding power are used as bower anchors, the mass of each such anchor may be reduced to not less than 50% of the mass required for ordinary stockless anchors in Table 1.
- (e) For approval and/or acceptance as a SHHP anchor satisfactory full scale tests according to A1.4.2 are to be made confirming that the anchor has a holding power of

A1 (cont)


at least four times that of an ordinary stockless anchor or at least twice that of a previously approved HHP anchor of the same mass.

- A1.4.2 Anchor holding power tests for HHP and SHHP anchors
 - (a) Full scale tests are to be carried out at sea on various types of bottom, normally, soft mud or silt, sand or gravel and hard clay or similar compounded material. The tests are to be applied to anchors of mass which are as far as possible representative of the full range of sizes proposed.
 - (b) For a definite group within the range, the two anchors selected for testing (ordinary stockless anchor and HHP anchor, or ordinary stockless anchor and SHHP anchor, respectively) are to be of approximately the same mass and tested in association with the size of chain required for that anchor mass. Where an ordinary stockless anchor is not available, for testing of HHP anchors a previously approved HHP anchor may be used in its place. For testing of SHHP anchors, a previously approved HHP or SHHP anchor may be used in place of an ordinary stockless anchor. The length of the cable with each anchor is to be such that the pull on the shank remains horizontal. For this purpose a scope of 10 is considered normal but a scope of not less than 6 may be accepted. Scope is defined as the ratio of length of cable to depth of water.
 - (c) Three tests are to be taken for each anchor and each type of bottom. The stability of the anchor and ease of breaking out are to be noted where possible. Tests are to be carried out from a tug but alternatively shore based tests may be accepted. The pull is to be measured by dynamometer. Measurements of pull, based on the RPM/bollard pull curve of the tug may be accepted as an alternative to a dynamometer.
 - (d) For approval and/or acceptance for a range of HHP anchor sizes, tests are to be carried out for at least two anchor sizes. The mass of the maximum size approved is not to be more than 10 times the mass of the largest size tested.
 - (e) For approval and/or acceptance for a range of SHHP anchor sizes, at least three anchor sizes are to be tested, indicative of the bottom, middle and top of the mass range.
 - (f) The holding power test load is not to exceed the proof load of the anchor.
 - A1.4.3 Installation of the anchors on board

The bower anchors are to be connected to their cables and positioned on board ready for use.

- A1.4.4 Proof testing of anchors
- A1.4.4.1 Testing of ordinary anchors
- (a) Anchors of all sizes are to be proof tested with the test loads stipulated in the Table 2.
- (b) The proof load is to be applied on the arm or on the palm at a spot which, measured from the extremity of the bill, is one-third of the distance between it and the centre of the crown, see figure below. In the case of stockless anchors, both arms are to be tested at the same time, first on one side of the shank, then reversed and tested on the other.
- (c) Before application of proof test load the anchors are to be examined to be sure that castings are reasonably free of surface imperfections of harmful nature. After proof load

testing the anchors are to be examined for cracks and other defects. On completion of the proof load tests the anchors made in more than one piece are to be examined for free rotation of their heads over the complete angle. In every test the difference between the gauge lengths (as shown in figures) where one-tenth of the required load was applied first and where the load has been reduced to one-tenth of the required load from the full load may be permitted not to exceed 1%.

Stocked Anchor

Stockless Anchor

A1.4.4.2 Testing of HHP anchors

Δ1

(cont)

The HHP anchor is to be proof tested with load required by Table 2 for an anchor mass equal to 1.33 times the actual mass of the HHP anchor. The proof loading procedure and examination procedure for HHP anchors are to comply with those for ordinary anchors, A1.4.4.1 (b) and (c).

A1.4.4.3 Testing of SHHP anchors

- (a) The SHHP anchor is to be proof tested with the load required by Table 2 for an anchor mass equal to twice the actual mass of the SHHP anchor. The proof loading procedure and examination procedure for SHHP anchors are to comply with those for ordinary anchors, A1.4.4.1 (b) and (c).
- (b) After the proof load test, all SHHP anchors are to be surface inspected by the dye penetrant method or by the magnetic particle method. All surfaces of cast steel anchors are to be surface inspected. All cast steel anchors are to be examined by UT in way of areas where feeder heads and risers have been removed and where weld repairs have been carried out. The surface inspections and UT inspections are to follow Recommendation No. 69 'Guidelines for NDE of Marine Steel Castings'. Welded steel anchors are to be inspected at the welds. At sections of high load or at suspect areas, the Society may impose volumetric non-destructive examination, e.g, ultrasonic inspection or radiographic inspection.
- (c) At the discretion of the Society, additional tests of the anchor may be required. These tests include the hammering test and the drop test, and are usually applied to cast steel anchors.

A1

Table 2

Proof loads for anchors

(cont)

Mass of	Proof	Mass of	Proof	Mass of	Proof	Mass of	Proof
anchor	load	anchor	load	anchor	load	anchor	load
	*		*		*		*
(kg)	(kN)	(kg)	(kN)	(kg)	(kN)	(kg)	(kN)
50	23.2	1250	239	5000	661	12500	1130
55	25.2	1300	247	5100	669	13000	1160
60	27.1	1350	255	5200	677	13500	1180
65	28.9	1400	262	5300	685	14000	1210
70	30.7	1450	270	5400	691	14500	1230
75	32.4	1500	278	5500	699	15000	1260
80	33.9	1600	292	5600	706	15500	1270
90	36.3	1700	307	5700	713	16000	1300
100	39.1	1800	321	5800	721	16500	1330
120	44.3	1900	335	5900	728	17000	1360
140	49.0	2000	349	6000	735	17500	1390
160	53.3	2100	362	6100	740	18000	1410
180	57.4	2200	376	6200	747	18500	1440
200	61.3	2300	388	6300	754	19000	1470
225	65.8	2400	401	6400	760	19500	1490
250	70.4	2500	414	6500	767	20000	1520
275	74.9	2600	427	6600	773	21000	1570
300	79.5	2700	438	6700	779	22000	1620
325	84.1	2800	450	6800	786	23000	1670
350	88.8	2900	462	6900	794	24000	1720
375	93.4	3000	474	7000	804	25000	1770
400	93.4 97.9	3100	474	7000	804 818	26000	1800
400	103	3200	404 495	7200	832	27000	1850
425	103	3300	495 506	7600	845	28000	1900
430	107	3300	500	7000	040	20000	1900
475	112	3400	517	7800	861	29000	1940
500	116	3500	528	8000	877	30000	1990
550	124	3600	537	8200	892	31000	2030
600	132	3700	547	8400	908	32000	2070
650	140	3800	557	8600	922	34000	2160
700	149	3900	567	8800	936	36000	2250
750	158	4000	577	9000	949	38000	2330
800	166	4100	586	9200	961	40000	2410
0.55		1000		0.405	675	10000	0.405
850	175	4200	595	9400	975	42000	2490
900	182	4300	604	9600	987	44000	2570
950	191	4400	613	9800	998	46000	2650
1000	199	4500	622	10000	1010	48000	2730
1050	208	4600	631	10500	1040		
1100	216	4700	638	11000	1070		
1150	224	4800	645	11500	1090		
1200	231	4900	653	12000	1110		
* Proof load	ds for interm	ediate mass	are to be d	etermined by	y linear inter	polation.	

A1.4.5 SHHP anchor material selection and toughness

All SHHP anchors are to be manufactured from materials meeting the requirements of the IACS URs as follows:

Welded Steel Anchors:	UR W11	Normal and Higher Strength Hull Structural Steel
	UR W17	Approval of consumables for welding normal and higher strength hull structural steel
Cast Steel Anchors:	UR W8	Hull and machinery steel castings
Anchor Shackles:	UR W7	Hull and machinery steel forgings
	UR W8	Hull and machinery steel castings

The base steel grades in welded SHHP anchors are to be selected with respect to the material grade requirements for Class II of S6.1 in UR S6 'Use of steel grades for various hull members'. The welding consumables are to meet the toughness for the base steel grades in accordance with UR W17 'Approval of consumables for welding normal and higher strength hull structural steel'. The toughness of the anchor shackles for SHHP anchors is to meet that for Grade 3 anchor chain in accordance with UR W18 'Anchor chain cables and accessories'. The toughness of steel castings for SHHP anchors is to be not less than a Charpy-V notch energy average of 27 J at 0 degree C.

A1.4.6 Fabricated anchors

Fabricated anchors are to be manufactured in accordance with approved welding procedures using approved welding consumables and carried out by qualified welders.

chain cable according to Table 1.

(<u>c</u>b) A short length of chain cable is to be fitted between the wire rope and anchor having a length of 12.5 m or the distance between anchor in stowed position and winch, whichever is less.

- (de) All surfaces being in contact with the wire need to be rounded with a radius of not less than 10 times the wire rope diameter (including stem).
- (e) <u>Steel wire shall be selected to fit for purpose based on the manufacturer</u> recommendation and shall be provided with guidance for maintenance and inspection.

A1.5.1.4 For restricted services the use of steel wire rope may be accepted in place of chain cable at the discretion of the Society.

A1.5.2 Grades of chain cables

Bower anchors are to be associated with stud link chain cables for one of the grades listed in Table 3.

Table 3Grades of chain cables

Material	Grade	Range of UTS (N/mm ²)
Mild steel	1	300 to 490
Special quality steel	2	490 to 690
Extra special quality steel	3	> 690

A1 (cont) A1.5

(b)

A1.5.1 Anchor chain cable design

A1.5.1.1 The anchor chain cable is to be as required by Table 1 for the calculated Equipment Number for the ship. The chain cable is to be tested in accordance with Table 5 to the proof loads corresponding to those for the required chain cable.

A1.5.1.2 Wire rope may be used in place of chain cable on ships:

Chain cables for bower anchors

- (a) with less than 90 m in length and which will need an anchor for emergency purposes, i.e., not intended to use their anchor in normal temporary anchoring operation, or
- (b) with the anchoring equipment used for positioning with a minimum of 4 points anchoring, e.g., for cable or pipe laying.

A1.5.1.3 Use of wire rope may be used in place of chain cable on ships with less than 40 m in length and is subject to the following conditions:

(a) The length of the wire rope is to be equal to 1.5 times the corresponding tabular length of chain cable (col. 4 of Table 1) and their strength is to be equal to that of tabular chain cable of Grade 1 (Table 4).

The anchor weight shall be increased by 25 % compared to anchor associated with

IACS Reg. 1981/Rev.8 2023

Note:

Α1

(cont)

The designation 'Grade 1' may be replaced, at discretion of the Society, by 'Grade 1a' where UTS is greater than 300 but not exceeding 400 N/mm² or by 'Grade 1b' where UTS is greater than 400 but not exceeding 490 N/mm².

- A1.5.3 Proof and breaking loads of stud link chain cables
- (a) The design and/or standard breaking loads (BL) and proof loads (PL) of stud link chain cables are given in Table 4 for the chain diameter, d, in mm.
- (b) The test load values, rounded off from the loads in (a) above to be used for testing and acceptance of chain cables, are given in Table 5.

Table 4 Breaking loads and proof loads of stud link chain cables

Grade	BL (kN)	PL (kN)
1	$BL_1 = 9.80665 \cdot 10^{-3} [d^2(44 - 0.08 d)]$	$PL_1 = 0.7 BL_1$
2	$BL_2 = 1.4 BL_1$	$PL_2 = BL_1$
3	$BL_3 = 2 \; BL_1$	$PL_3 = 1.4 BL_1$

Table 5 Test load values for stud link chain cables

	Grade 1		Grac	de 2	Gra	ade 3
Chain cable diameter	Proof load	Breaking load	Proof load	Breaking load	Proof load	Breaking load
(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
1	2	3	4	5	6	7
20.5	123	175	175	244	244	349
22	140	200	200	280	280	401
24	167	237	237	332	332	476
26	194	278	278	389	389	556
28	225	321	321	449	449	642
30	257	368	368	514	514	735
32	291	417	417	583	583	833
34	328	468	468	655	655	937
36	366	523	523	732	732	1050
38	406	581	581	812	812	1160
40	448	640	640	896	896	1280
42	492	703	703	981	981	1400
44	538	769	769	1080	1080	1540
46	585	837	837	1170	1170	1680
48	635	908	908	1270	1270	1810
50	686	981	981	1370	1370	1960
52	739	1060	1060	1480	1480	2110
54	794	1140	1140	1590	1590	2270
56	851	1220	1220	1710	1710	2430
58	909	1290	1290	1810	1810	2600

	Grade 1		Grade 2		Grade 3	
Chain cable diameter	Proof load	Breaking load	Proof load	Breaking load	Proof load	Breaking load
(mm)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
1	2	3	4	5	6	7
60	969	1380	1380	1940	1940	2770
62	1030	1470	1470	2060	2060	2940
64	1100	1560	1560	2190	2190	3130
66	1160	1660	1660	2310	2310	3300
68	1230	1750	1750	2450	2450	3500
70	1290	1840	1840	2580	2580	3690
73	1390	1990	1990	2790	2790	3990
76	1500	2150	2150	3010	3010	4300
78	1580	2260	2260	3160	3160	4500
81	1690	2410	2410	3380	3380	4820
84	1800	2580	2580	3610	3610	5160
87	1920	2750	2750	3850	3850	5500
90	2050	2920	2920	4090	4090	5840
92	2130	3040	3040	4260	4260	6080
95	2260	3230	3230	4510	4510	6440
97	2340	3340	3340	4680	4680	6690
100	2470	3530	3530	4940	4940	7060
102	2560	3660	3660	5120	5120	7320
105	2700	3850	3850	5390	5390	7700
107	2790	3980	3980	5570	5570	7960
111	2970	4250	4250	5940	5940	8480
114	3110	4440	4440	6230	6230	8890
117	3260	4650	4650	6510	6510	9300
120	3400	4850	4850	6810	6810	9720
122	3500	5000	5000	7000	7000	9990
124	3600	5140	5140	7200	7200	10280
127	3750	5350	5350	7490	7490	10710
130	3900	5570	5570	7800	7800	11140
132	4000	5720	5720	8000	8000	11420
137	4260	6080	6080	8510	8510	12160
142	4520	6450	6450	9030	9030	12910
147	4790	6840	6840	9560	9560	13660
152	5050	7220	7220	10100	10100	14430
157	5320	7600	7600	10640	10640	15200
162	5590	7990	7990	11170	11170	15970

A1 (cont)

A1.6 Permissible wear down of stud link chain cable for bower anchors

When a length of chain cable is so worn that the mean diameter of a link, at its most worn part, is reduced by 12% or more from its required nominal diameter it is to be renewed.

The mean diameter is half the value of the sum of the minimum diameter found in one crosssection of the link and of the diameter measured in a perpendicular direction in the same cross-section.

A1.7 Supporting hull structures of anchor windlass and chain stopper

A1 (cont)

The supporting hull structure of anchor windlass and chain stopper is to be sufficient to accommodate the design and sea loads.

A1.7.1 Design loads

The design loads are to be taken not less than:

- for chain stoppers, 80% of the chain cable breaking load
- for windlasses, where no chain stopper is fitted or the chain stopper is attached to the windlass, 80% of the chain cable breaking load
- for windlasses, where chain stoppers are fitted but not attached to the windlass, 45% of the chain cable breaking load

The design loads are to be applied in the direction of the chain cable.

A1.7.2 Sea loads

The sea loads are to be taken according to UR S27.

A1.7.3 Permissible stresses

The stresses acting on the supporting hull structures of windlass and chain stopper, based on net thickness obtained by deducting the corrosion addition, t_c , given in A1.7.4, are not to be greater than the following permissible values:

- (a) For strength assessment by means of beam theory or grillage analysis:
 - Normal stress: 1.0 R_{eH}
 - Shear stress: 0.6 R_{eH}

The normal stress is the sum of bending stress and axial stress. The shear stress to be considered corresponds to the shear stress acting perpendicular to the normal stress. No stress concentration factors are to be taken into account.

(b) For strength assessment by means of finite element analysis:

• Von Mises stress: 1.0 R_{eH}

For strength assessment by means of finite element analysis the mesh is to be fine enough to represent the geometry as realistically as possible. The aspect ratios of elements are not to exceed 3. Girders are to be modelled using shell or plane stress elements. Symmetric girder flanges may be modelled by beam or truss elements. The element height of girder webs must not exceed one-third of the web height. In way of small openings in girder webs, the web thickness is to be reduced to a mean thickness over the web height as per individual Class Society rules. Large openings are to be modelled. Stiffeners may be modelled using shell, plane stress, or beam elements. The mesh size of stiffeners is to be fine enough to obtain proper bending stress. If flat bars are modeled using shell or plane stress elements, dummy rod elements are to be modelled at the free edge of the flat bars and the stresses of the dummy elements are to be evaluated. Stresses are to be read from the centre of the

individual element. For shell elements the stresses are to be evaluated at the mid plane of the element.

R_{eH} is the specified minimum yield stress of the material.

A1.7.4 Corrosion addition

A1

(cont)

The total corrosion addition, t_c , is not to be less than the following values:

(a) Ships covered by Common Structural Rules for Bulk Carriers and Oil Tankers:

tc: total corrosion addition as defined in these rules.

(b) Other ships:

For the supporting hull structure, the total corrosion addition, t_c, is defined according to the Society's Rules for all considered structural members used in the model (e.g. deck structures).

End of Document