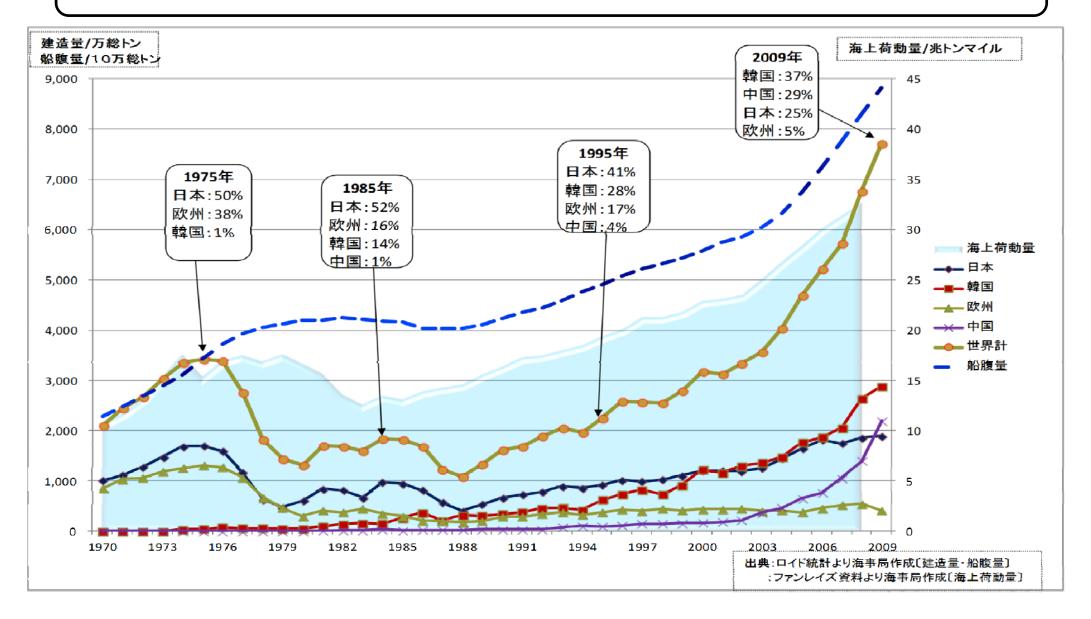


1. 造船マーケットの見通し

- (1) 世界の造船能力と受注残高
- (2) 韓国・中国の造船業の現状
- (3) 需要減退の時期と程度

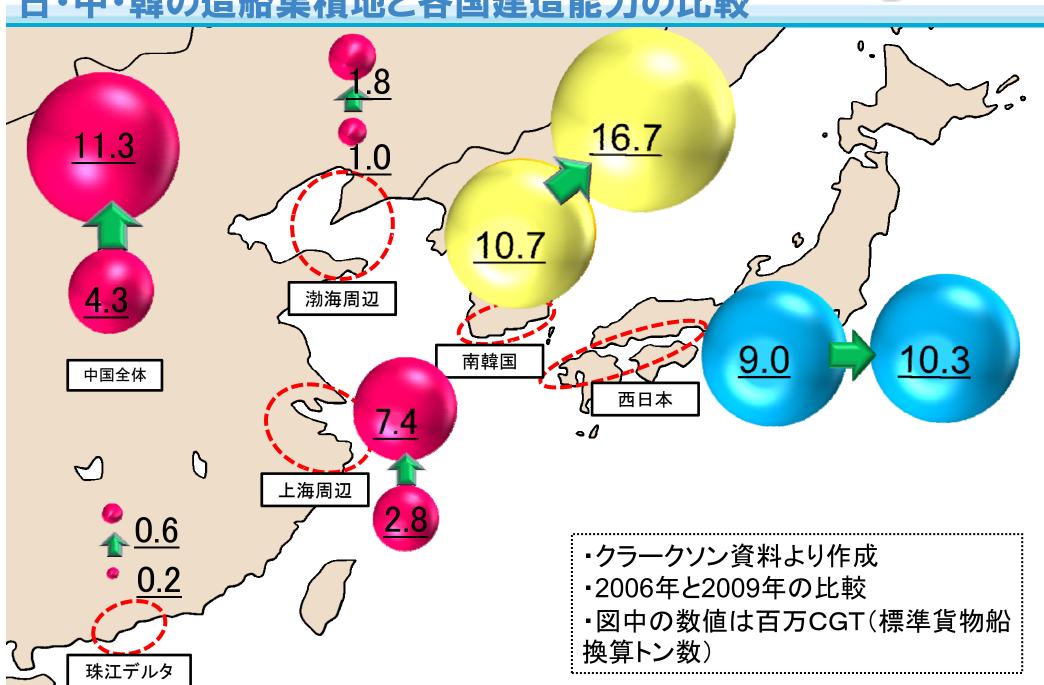
2. 日本造船業の進むべき道

- (1) 日本造船業のSWOT分析
- (2) これからの造船政策

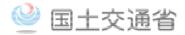

3. これからの研究開発のあり方

- (1) 欧州・韓国・中国の研究開発戦略
- (2) 日本のあるべき研究開発戦略と実行上の課題

世界の海上荷動量、船腹量及び建造量の推移



- 2000年頃3,000万総トン → 2009年は8,000万総トンの建造量。
- 約9億総トンの船腹量に対し、約2.8億総トンの手持ち工事量 → 供給過剰は歴然。



日・中・韓の造船集積地と各国建造能力の比較

世界の海上荷動量の推移と予測

- 世界の海上荷動き量は増加傾向。過去10年間は49%の伸び。
- 今後の海上荷動き量は中国、インド等が牽引して伸び続ける見込み。

一海上荷動きの予測ー ー世界の海上荷動量及び我が国商船隊の輸送シェアー 日本は世界有数の商船隊規模を有 (百万メトリックトン) する海洋国家 (百万トン) 15.000 10,000 18.0% ■ 鉄鋼石 (2008→2028年で約 3倍) 14,000 熾烈な国際競争等によ 15.5% ■ 原油(// 約1.4倍) り、我が国商船隊のシェ 13.000 9.000 16.0% アは低下傾向 ■ 石炭(# 約1.5倍) 3.289 我が国商船隊 12,000 ■ 天然ガス(// 約1.7倍) の世界シェア 8.000 2,894 14.0% 11.000 石油精製品(#約1.4倍) 2.523 7.000 10,000 11.3% 穀物(#約1.3倍) 9.000 ■ その他 (コンテナ含む) (// 約 2倍) 6.000 経済のグローバル 8,000 10.0% 化に伴う海上荷動 5.000 7.000 量の増加 8.0% 6,000 4.000 5.000 6.0% 3.000 4,000 4.0% 3,000 世界の海上 2.000 荷動き量 2.000 3.413 2.0% 1.000 2,907 1.000 1,710 H17 H18 H19 H20 H14 H15 H16 (年) 出所:海事局調べ ※ Global Insight 社の推計

	強さ (Strength)	弱さ (Weakness)
内部環境	 品質・性能への信頼 芸術の蓄積 舶用メーカーとの深い関係 安定した雇用環境 高い生産性 	人材供給難(特にエンジニア)工場の分散・規模小縮小均衡経営の横行
	好機 (Opportunity)	脅威 (Threat)
外部環境	 海上輸送量の長期的増大 環境・省エネへの関心大 → 環境技術の高評価 国内雇用確保への追い風 新興国でのビジネスチャンス拡大 	造船供給能力過剰韓国の積極経営中国の国輪国造政策中国への技術流出、模倣日本経済の相対的地位低下

	好機 (Opportunity)		脅威 (Threat)	
	[事業拡大]		[脅威の回避]	
強さ (Strength)	 舶用メーカーとの連携強化 燃費性能追求 大型商談をリスクテイクる仕組み開発 → 日本の資金力の済 新規事業展開(海洋) 			
弱さ (Weakness)	「弱みの克服」・積極的海外展開・若手技術者育成・開発設計部門強化	内部環境・船安	強さ (Strength) 質・性能への信頼 = 技術の蓄積 用メーカーとの深い関係 定した雇用環境 い生産性	弱さ (Weakness) - 人材供給難(特にエンジニア) - 工場の分散・規模小 - 縮小均衡経営の横行
		外部環 ・国	好機 (Opportunity)上輸送量の長期的増大 境・省エネへの関心大 → 環境技術の高評価 内雇用確保への追い風 興国でのビジネスチャンス	脅威 (Threat) - 造船供給能力過剰 - 韓国の積極経営 - 中国の国輪国造政策 - 中国への技術流出、模倣 - 日本経済の相対的地位低下

製品性能の差別化(省エネ対策)

新事業への展開

ファイナンス支援と競争条件確保

生產基盤整備

製品性能の差別化(省エネ対策)

国際ルールの先行提案と技術革新により、日本技術をグローバルスタンダード化し、環境性能に優れた日本造船に対し、日本船主のみならず海外船主も発注するよう促す

<u><海洋環境イニシアティブ></u>

- <u>省エネルギー船舶の開発(技術開発補助)</u>
 ・ CO2排出量の30%削減を目指した技術開発。
 - 造船所・メーカー・海運会社など、
 - のべ64社が参加(H24まで)
- NOx80%削減技術の開発(H23まで)

国際標準化戦略の推進(性能差の見える化)

・ IMOにおける新造船の燃費規制の条約化(H23目途)

新事業への展開

海洋や大型客船など、我が国の技術力を活かせる新事業分野への展開を支援(商社等との連携)

<u><大型客船分野></u>

世界のクルーズ人口の増加に伴い、客船市場は大型化・シリーズ化傾向。(1隻あたり10万総トン超、500億円規模)

<海洋分野>

大型プロジェクト参入を支援する仕組みの構築

プロジェクト例: 海洋資源開発(浮体式石油・LNG生産施設)

洋上インフラ(洋上石油備蓄、洋上貯炭施設)

洋上風力発電、海洋インフラ設置船

支援策:JBICの投資金融の活用(H22に措置)

海外インフラプロジェクト促進法(仮称)

安全・リスク評価基準等の整備、投資保険システム

トップセールス

ファイナンス支援と競争条件確保

戦略的な企業活動を可能とするファイナンス支援策の構築(金融との連携)

<ファイナンス拡充の検討>

- 大型商談(特に海洋)のリスクテイクの仕組み構築
- ・ 輸出・海外投資に係るファイナンス拡充
- 生産拠点拡充投資等に係る支援制度の検討

<u><国際的イコールフッティング></u>

- OECD協議を通じ、主要造船国による市場を歪曲 させるような助成措置を監視・排除するスキームの構築
- ・ 政策金融の拡充の検討

生產基盤整備

規制緩和等により、生産能力の強化を推進

<設計拠点の整備、人材育成>

・ 新技術を用いた省工ネ船舶の商品化を加速するための 設計拠点の整備及び人材育成

<生産高度化に係る規制の合理化>

- ・ 造船所の設備拡張に必要な許可手続きの簡素化
- ・ 敷地拡張のための埋立免許取得手続きの運用の円滑化

<生産拠点の拡大>

生産拠点の集中化、企業間提携の促進

	生産高	R&D支出	R&D 率
日本	25,800	134	0.5%
韓国	43,423	350	0.8%
ノルウェー	15,287	96	0.6%
イタリア	11,042	25	0.2%
ドイツ	10,440	77	0.7%
オランダ	5,642	17	0.3%

各国の生産高とR&D支出の 比較(2006年) _{単位:億円}

出典:OECD統計

造船所とエンジンメーカーの 生産高とR&D支出の比較 (2008年) 単位:億円

	生産高	R&D支出	R&D率
Hyundai HI	19,839	134	0.7%
DSME	8,619	41	0.5%
Samsung HI	8,300	35	0.4%
Fincantieri	3,215	62	1.9%
Wartsila	5,765	151	2.6%
MAN B&W	3,178	195	6.1%

中国と韓国の研究開発戦略

中玉

● 高付加価値船と海洋構造物の研究開発に注力。

2009年に「船舶工業の調整及び振興計画(09~11年)」を策定して研究開発を促進。2009年249万ドル。中国船舶技術・・・などの設計・研究機関で集中的に船型開発と基本設計を実施。

韓国

● 企業主体で高付加価値分野への研究開発投資活発。

知識経済部では、「産業源泉技術開発事業」の一環で大企業50%、中小企業75%上限で研究開発費を補助。2009年180億ウォン。

- イノベーション志向強く、ルールも含めた技術覇権を狙う。
- EUレベル、国レベルで統合的な戦略の下、研究開発を実施。

EUは、「第7次研究・技術開発計画」に基づき、高効率超低排ガス舶用エンジンの開発などを実施。

国レベルでは、イノベーション補助金を支給。イタリアで2009年2,000 万ユーロ。

2000年のリスボン戦略採択以来、知的基盤型経済への移行を目指して、研究開発に注力。

日本にとって、理想的な手本。 しかし、造船産業の衰退は止められず、ナショ ナルミニマムのレベルへ。 舶用産業は、寡占化して生き残る。

海事産業セクターの連携による研究開発

究極の目標は世界の海運の発展。製品技術に近いところから、研究開発を実施。

海事産業セクターの共通目標を作り、連携をコーディネートしていく具体的方策が課題!

最強のものづくり 現場を有する

大学-研究所

造船・舶用メーカー


船級協会

世界有数の

海運会社

世界のトップランナーとなった

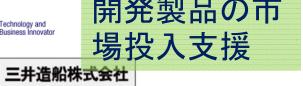
洋上風力発電の例(個人的願いも含め)

日本風力発電協会

独立行政法人海上技術安全研究所 National Maritime Research Institute

研究開発の連携

国際基準作り と調整



JFE エンジニアリング 株式会社

開発製品の市 場投入支援

規制当局との

調整

