

小型FLNG(Floating LNG) に関する研究開発

 10^{th} , 11^{th} July, 2012

三井海洋開発株式会社 フェロー 川瀬 雅樹

東洋エンジニアリング株式会社 シニアプロセスエンジニア 加藤 道則

Contents

- ➢ Objective
- Promotion Video
- Overall Design Concept
- Hull Design Concept
- Topside Design Concept

Objective

- To establish economic solution for development of smallmid size gas reserves with Safety, Reliability, High Efficiency and High Cost Performance.
- To contribute to Japanese offshore development, Ship building and Plant industries.

LiBro[™] FLNG Concept

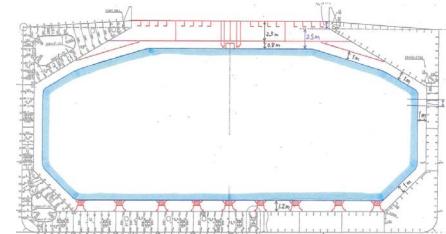
- Technical Feasibility
- Preparation of Generic FEED

Promotion Video

Objectives for FLNG Design – Priority Issues

✓ Safety

- ✓Cost Effectiveness
- High LNG Production Efficiency
- ✓ High Availability
- ✓ Early Delivery
- ✓Small Footprint
- ✓ Field Proven Track Records
- ✓ High Maintainability
- ✓Small Equipment Count
- ✓Marinization
- ✓ Short Start up Duration
- ✓Less Flaring



Key Concept - Hull

- ➤ Hull Design:
 - ✓ To utilize conventional ship hull design
 - \checkmark To expand range of shipyards to be able to build the hull
 - » Conversion of Bulk Carrier at afloat condition
- LNG Tanks Selection: SPB Tank
 - » Fit for conversion
 - » Flat deck available

Key Concept - Mooring System

- Mooring System
 - Tower Yoke
 - Water Depth: Abt. 30m
 - 100 year storm condition
 - √Hs: 3.18m
 - ✓ Tp: 11.46sec

Any Mooring System can be adopted depending on the site environment condition

Key Concept - Topside

Liquefaction Process: Air Products[®] AP-N LNG Process

Type of MCHE: Air Products' Coil Wound Heat Exchanger (CWHE)

Compressor Driver: Gas Turbine

➤ LNG Production Efficiency Improvement: MODEC's LiBroTM Technology (Lithium Bromide based Absorption Refrigeration System)

What's LiBro[™] FLNG?

≻ LiBro[™] Technology

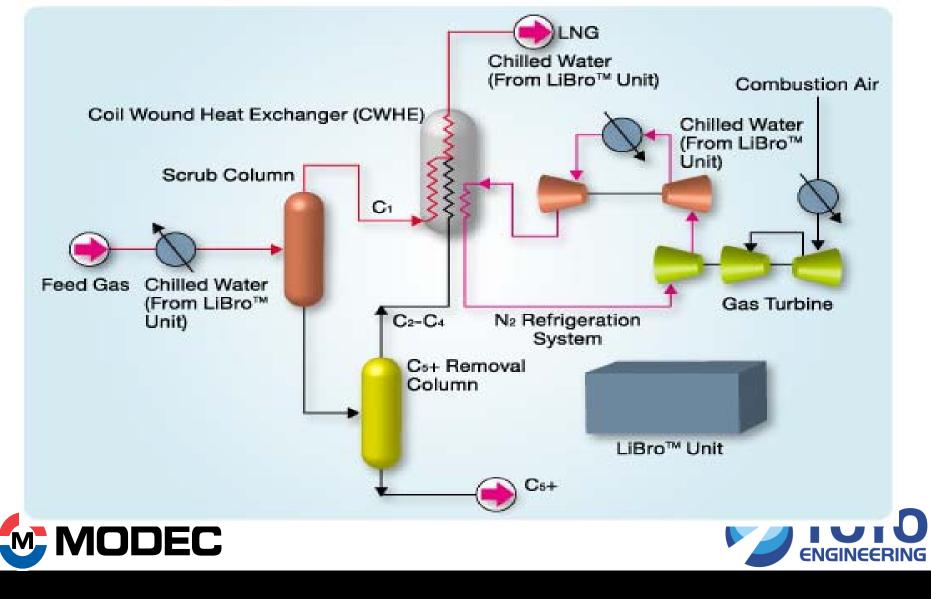
Based on Lithium Bromide (Li-Br) Absorption Refrigeration System

Waste

Heat from Gas Steam [Turbine

Chilled Water

- ✓ Widely used for centralized air conditioning application on shore
- ✓ Over 10,000 units has been delivered
- $\checkmark~$ The largest unit applied for LiBro FLNG has been in operation since 2007
- ✓ 20yr + proven operation life


✓ Dynamic motion test was successfully completed

Flow Schematic

(Air Products® AP-N LNG Process and the chilled water produced in the LiBro[™] unit)

Effectiveness of LiBroTM FLNG Concept

	Large Scale FLNG	Mid Scale FLNG	MODEC LiBro [™] FLNG
Typical Capacity	More than 2.5MTPA	Less than 2.0 MTPA	1.0 - 2.0 MTPA
Process	SMR/DMR	Conventional N2 Expander	Air Products [®] AP-N LNG Process + LiBro [™]
Safety	Mid	High	High
Production Efficiency	High	Low	High
Topside	Big	Compact	Compact
Hull	Purpose Build	Conventional Ship Design	Conventional Ship Design
CAPE	Mid - High	Low	Low
Availability	Mid	Mid	High

Cost Effectiveness

- Utilization of an existing standard hull design
 - ⇔ a purpose designed and built hull, "Fit for Purpose" hull.
- Air Products[®] AP-N LNG Process
 - ⇒ compact topside design on the limited available deck space.
- ➤ Compactness of LiBroTM
 - ⇒ can be installed below the gas turbines, not requiring additional deck space
- > The turbine inlet air cooling
 - ⇒ can increase power output substantially and resulting in increased turbine output.

FLNG Specification

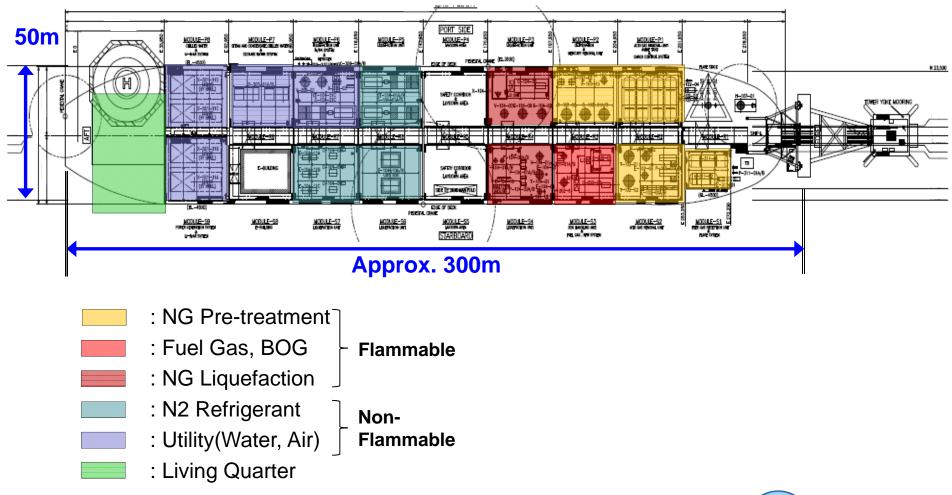
LNG Production Capacity	2.0 MTPA (nominal)	
Liquefaction Technology	Air Products [®] AP-N LNG Process + LiBro™	
Gas Turbine (Driver/Generator)	PGT25+G4 Aero Derivative Type	
Hull	Setouchi-Max : Conversion of Bulk Carrier	
Hull Size	291.4 mL x 50 mW x 28.5 mD	
LNG Storage Capacity	160,000 m ³	
LNG Storage Type	SPB Tank (8 nos)	
LNG Offloading Method	Side-by-Side	
Condensate Storage Capacity	20,000 m ³	
Mooring System	External (Tower Yoke Type Mooring)	

3D Model Snapshots

3D Model Snapshots

Safety

- Non-flammable and non-toxic refrigerant
 - Aqueous solution of Lithium bromide (Li-Br)
 - N2 refrigerant
- A robust coil wound heat exchanger in the liquefaction system ensures flammable natural gas is double contained.



出典: APCI Homepage

Safety

Topsides Equipment Layout

▶本研究は、一般財団法人日本海事協会の「業界 要望による共同研究スキーム」による支援を受 けて実施しました。

