

Case Studies of Optimizing Operation for Increased Energy Efficiency

Green Technologies Seminars

16 November 2015

K. Nagata, Manager Marine and Industrial Service Department, ClassNK

Contents

- Introduction
- ClassNK NAPA GREEN Overview

Introduction

ECO-Directions -Yes it is Ship Owners choice!

ECO Designs

How much "ECO" is your ship?

You need a strong tool to validate

Retrofitting of Eco
Devices

Optimum Operation

How you can achieve the optimum operation easily? A comprehensive tool for awareness and utilization of potential saving areas.

Introduction

- ClassNK and NAPA decided to develop new energy efficiency solutions "ClassNK-NAPA GREEN" in 2012.
- Later ClassNK acquired NAPA, which enhanced the collaboration deal and further development.
- Our Mission-For Owners and Operators: To reduce fuel costs and to make efficient operations.
- Performance Model, we launched the highest quality and real beneficial software solutions for energy savings.

Introduction

Adoption of ClassNK-NAPA GREEN

- ☐ Following shipping company decided to adopt
 - K Line
 - Evergreen
 - Wan Hai Lines
 - Stena Line
 - Bore Ltd

Other companies in the world have adopted.

- Some shipyards have adopted for ;
 - Adding green value on their new building ships
 - Feedback to design by utilizing ship performance data in actual sea conditions
- R&D projects are undergoing total 6 ships with shipping companies and shipyards for proof of the solutions

ClassNK NAPA GREEN Overview

Comprehensive solution using Dynamic Performance Model for supporting ship operations and decision-making

ClassNK NAPA GREEN Overview

Dynamic Performance Model is the key for accuracy

Procedure

- Data collected every 5 minutes
- 2. Filtering data for analyzing
- Normalizing data by removing effects of environmental factors such as wind & waves and by adjusting displacement
- 4. Creating ship performance curves

Speed-Power-RPM-FOC Response in wind and waves

Case studies

No	Case	Methodology
1	Trim optimization – two ships Savings potential 2.5 - 4 %	CFD, Full scale test, statistical analysis
2	Dynamic Performance Model Simulation accuracy 99.6%	Statistical analysis + Engineering model
3	Voyage Optimization Proven savings 3.8%	Trial + Simulation with Dynamic Performance Model
4	Bulbous bow work and DD Validated savings 25%	Filtering, normalization and statistical analysis
5	Speed optimization Proven savings 5.8%	Filtering and normalization

1. Trim optimization- 2.5 to 4%

Methodology

- Make CFD analysis for initial trim curves
- Make full scale trim test
 - statistical analysis of full scale measurements
- Verify trim curves and tune as needed
- Do operational profile study and calculate savings potential
- Results are accurate because trim curves are accurate.

1. Trim optimization

Full scale verification

8000+ TEU #1

- CFD done on generic hullform
- 2 x full scale tests done
- At 20kn speed, only full scale show that aft trim is also optimal

8000+ TEU #2

- CFD done on actual hullform
- 1 x Full scale verification done
- CFD matches full scale quite well → Aft trim is optimal

1. Trim optimization

Trim optimization potential

8000+ TEU #1

 Trim optimization potential is ~4%.

Trim distribution last 6 months

8000+ TEU #2

 Trim optimization potential is ~2.5%.

Trim distribution last 8 months

2. Dynamic Performance Model

Simulation Accuracy is 99.6%

8000+ TEU full scale results for ~4% proven savings in one voyage

3. Voyage Optimization

Methodology

- Make accurate Dynamic Performance Model
 - Fuel consumption accuracy 99.6%
- Define reference voyage (Captain's plan)
- Sail trial voyage with system
- Simulate reference and trial voyage fuel consumption
- Compare results → 3.8% reduction in fuel cons
 Results are comparable because Dynamic Performance
 Model is accurate

Full scale VO trial 8000+ TEU Results

- Mediterranean/Europe route
 - Speed optimization 2.67%
 - Trim optimization 1.16%

3.8%

Simulated FOC/nm

Savings break down

3. Voyage Optimization

Full scale VO trial 8000+ TEU Results

- Speed optimization means optimal ConstantRPM speed profile and minimum pocket time (proven savings)
- Trim optimization means sailing on more optimum trim (proven savings).
- Weather routing is not included in this specific case

Voyage optimization proved effective even when this ship was slow streaming at 16Knots

4. Bow Modification and Drydock

- Collect data from ship
 - Before drydock
 - After drydock

Filter, normalize, statistical analysis

Observe effect on power index

Calculated fuel savings → 25%

4. Bow Modification and Drydock

Effect of bulb change and dry docking (hull and propeller cleaning)

5. Speed Optimization

Fuel Savings

5.8%

- Install systems
 - Trim and Displ. Optimization
 - Voyage Optimization
 - Voyage Reporting
 - Real Time Monitoring
 - Office web portal
 - Analysis service
- Did reference period 2 months
- Did trial period 3 months

0.068 t/nm

Source: RoRo Shipping Conference 2013, Copenhagen, Denmark

Conclusion – Solution Outline

Monitoring

Ship performance monitoring and data analysis

Comprehensive tools for

- evaluating and reacting to ship performance
- learning of ship characteristics
- creating savings through increased awareness

Optimization

Fleet performance management and optimization

Excellent voyage execution through

- accurate voyage planning and optimization
- route, speed and trim recommendations
- flexible fleet performance management tools

Conclusion – Image View

CPU (2pcs), Network Switch, UPS

Conclusion – Image View

Conclusion – Necessary Equipment

Conclusion

- Effective analysis of data is one of the key for energy efficiency in operation and further decision making.
- Technology has grown to hold hands with Captain for finding the optimum speed and route with just in time arrival.
- > Energy Management Awareness for both crew and shore personnel is facilitated by using effective tools.
- > Still much of the trim saving potential is unutilized by ships which has to be reaped for efficient operations.
- Fuel saving software ClassNK NAPA Green case studies showed very good results.

For Your Kind Attention

For more information please contact:

ClassNK Hong Kong

TEL: +852-2517-7023

E-Mail: hn@classnk.or.jp

ClassNK Consulting Service Co., Ltd.

TEL: +81-3-5226-2290

E-Mail: consulting@classnkcs.co.jp

NAPA Group, Finland

TEL: +358-9-22-813-1

E-Mail: sales@napa.fi