

Outlines of EEXI regulation

EEDI Section of Marine GHG Certification Department August 2022

Contents

- 1. Initial IMO Strategy on Reduction of GHG emissions from ships
- 2. Outlines of the EEXI regulation
- 3. Preparation for the EEXI regulation

The Initial IMO GHG Strategy

Initial IMO Strategy on Reduction of GHG emissions from ships (adopted on April 2018)

- ✓ The Initial IMO GHG Strategy including goals of reduction of GHG emissions from ships was adopted. It shall be reviewed every 5 years.
- ✓ First effort aimed at the GHG zero emissions from global sector without distinction between developed countries and developing countries.

Levels of ambition of the Initial Strategy

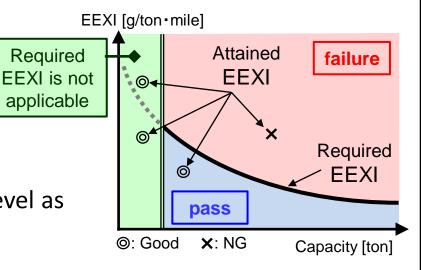
- 1. Vision (Final target)
 - Final target: GHG zero emissions at earliest in this century

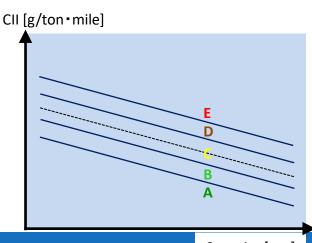
2. Levels of ambition

- Target of transportation efficiency (CO2 emissions per transport work) compared to 2008;
 - At least 40% improvement by 2030, 70% improvement by 2050
- <u>Target of total annual GHG emissions compared to 2008;</u>
 At least 50% reduction by 2050, effort for zero emissions at earliest in this century

Short-term measures to achieve the IMO 2030 targets

■ MEPC 76 (June 2021)


The amendments to MARPOL Annex VI (MEPC.328(76)) were adopted at MEPC 76.


Technical approach (EEXI)

- Introduce the Energy Efficiency Existing Ship Index (EEXI) as the energy efficiency index for existing ship.
- The required EEXI is almost the same level as required EEDI for new ships as of 2023.

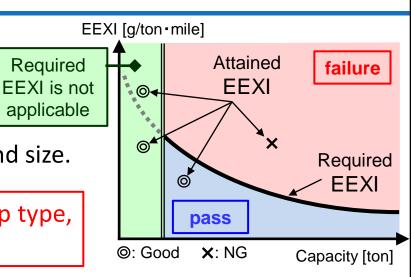
Operational approach (CII rating)

- Ship is rated on a scale of A to E based on the annual operational carbon intensity indicator (CII).
- A ship rated D for three consecutive years, or E, would have to submit a corrective action plan.

Contents

- 1. Initial IMO Strategy on Reduction of GHG emissions from ships
- 2. Outlines of the EEXI regulation
- 3. Preparation for the EEXI regulation

Outlines of the EEXI regulation



- Attained EEXI EEXI value is calculated by an individual ship.
- Required EEXI

 Required EEXI is specified for each ship type and size.

For ships with a certain size of specified ship type,
Attained EEXI ≤ Required EEXI

EEXI requirements shall apply to all ships of 400 GT and above which are engaged in the international voyages regardless of ship's delivery date, except the following ships as with the case of EEDI.

- Ships not propelled by mechanical means
- Platforms including FPSOs and FSUs and Drilling rigs, regardless of their propulsion
- Category A ships as defined in the Polar code
- Ships which have non-conventional propulsion such as diesel electric, turbine or hybrid propulsion system (except LNG carrier and cruise passenger ship)

Calculation formula of EEXI

EEXI is calculated by the same formula as EEDI.

$$\underbrace{\left(\prod_{j=1}^{M} f_{j}\right)\left(\sum_{i=1}^{nME} P_{ME(i)} \cdot C_{FME(i)} \cdot SFC_{ME(i)}\right) + \left(P_{AE} \cdot C_{FAE} \cdot SFC_{AE}\right) + \left\{\left(\prod_{j=1}^{M} f_{j} \cdot \sum_{i=1}^{nPTI} P_{PTI(i)} - \sum_{i=1}^{neff} f_{eff(i)} \cdot P_{AEeff(i)}\right) \cdot C_{FAE} \cdot SFC_{AE}\right\} - \left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right)}$$

$$f_{i} \cdot f_{c} \cdot f_{i} \cdot Capacity \cdot V_{ref} \cdot C_{FME} \cdot C_{FME$$

EEXI [g/ton•mile] = CO₂ Conversion factor × SFC [g/kW•h] × Engine Power [kW]

Capacity [ton] × EEXI Speed [knots]

CO₂ emissions (gram) from a ship when ship sail transport 1 (ton) cargo for 1 (nautical mile)

CO ₂ Conversion factor (C _F)	C _F corresponds to the fuel used when determining SFC (DM grade: 3.206)
SFC	Fuel consumption at 75%MCR (M/E), at 50%MCR (A/E)
Engine Power	75% of the rated installed power (MCR) (In case of EPL, 83%MCRlim)
Capacity	Deadweight (For containerships, 70% of the deadweight)
EEXI Speed(V _{ref})	Ship speed at 75%MCR under the draught condition corresponding to the capacity

Calculation formula of EEXI (Differences from EEDI) ClassNK

■ The formula of EEXI is the same as EEDI, but some parameters' definitions are different.

Concept formula

CO2 Conversion factor x SFC [g/kW•h] x Engine Power [kW]

Capacity [ton] x EEXI Speed (Vref) [knot]

SFC

Fuel consumption at 75%MCR (M/E), at 50%MCR (A/E) specified in NOx technical file

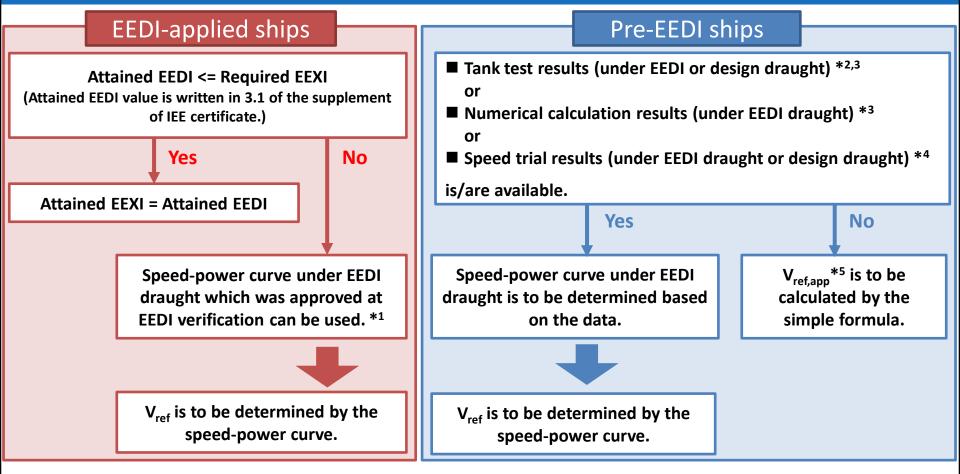
- In cases where the installed engines don't have NOx technical file, approximated default values including margin, SFC_{app} (i.e. M/E: 190 g/kW·h, A/E: 215 g/kW·h), are available.
- In cases where the NOx regulation doesn't apply to the propulsion system (e.g. steam turbine, etc.), SFC specified by the manufacturer or confirmed by the verifier is available.

Engine Power

75% of the rated installed power (MCR) (In cases where the propulsion system is diesel electric or steam turbine, P_{MF} is 83% of MPP or MCR.)

 (P_{ME})

In cases where EPL is installed, P_{MF} is 83% of the limited installed power (MCR_{lim}).


 $\mathsf{V}_{\mathsf{ref}}$

Ship speed at P_{ME} and under the maximum summer load draught (for container ships, under 70%DWT draught.)

In cases where both of tank test results and speed trial results are not available, an approximated ship speed including margin, $V_{ref,app}$ is to be calculated by the simple formula. The parameters of this formula are ship type, DWT, and MCR.

Methods for obtaining V_{ref}

^{*1} The approved speed-power curve is available without any corrections.

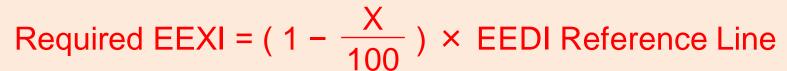
^{*2} The tank test results can be corrected/calibrated by numerical calculation such as CFD, etc.

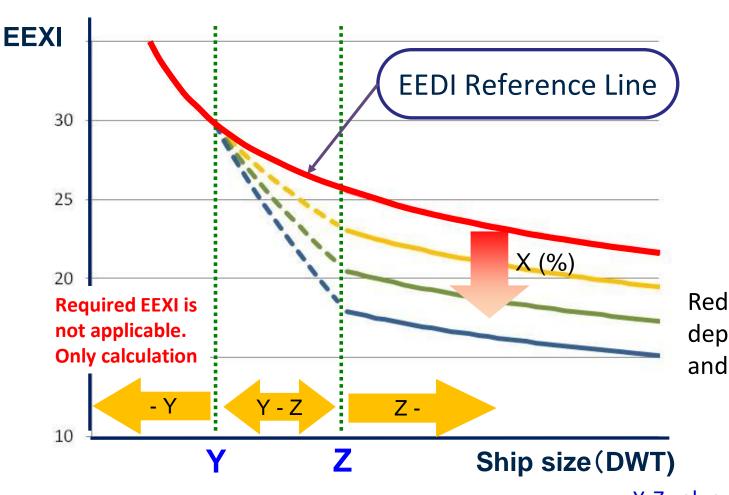
^{*3} In case of using numerical calculations, estimation process and methodology of the power curves are to be submitted. (It should include documentation on consistency with the defined quality standards and the verification of the numerical setup with parent hull or the reference set of comparable ships.)

^{*4} The sea conditions and ship speed should have been measured in accordance with ISO 15016:2002 or the equivalent and the measured ship speed was calibrated, if necessary, by taking into account the effects of wind, tide, waves, etc. If the speed trial was carried out under design draught, the ship speed shall be calibrated under EEDI draught by using Admiralty Coefficient, etc.

^{*5} V_{ref,app} is an approximated ship speed obtained by a certain correction applies to the average ship speed of each ship type and size (including margin).

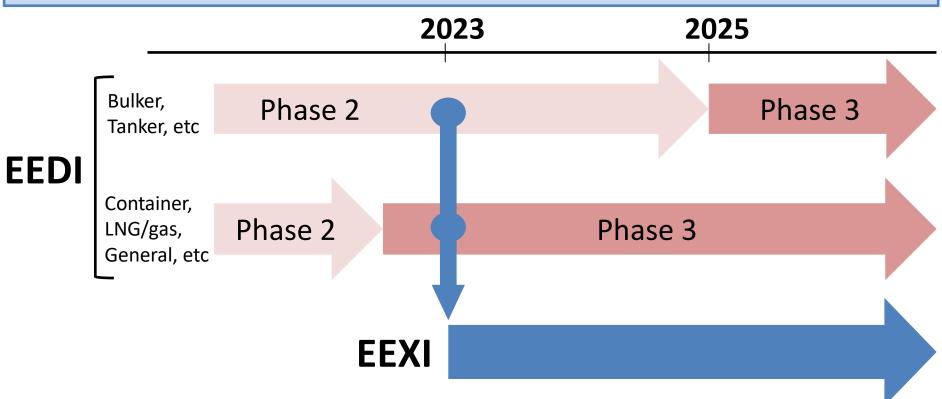
Application of EEXI




The "calculation of EEXI (Attained EEXI)" and "conformity to required value (Required EEXI)" shall apply to the following ship type and size as with the case of EEDI.

Type of ship	Calculation of Attained EEXI	Conformity to Required EEXI
Bulk carrier	400 GT and above	10,000 DWT and above
Gas carrier	400 GT and above	2,000 DWT and above
Tanker	400 GT and above	4,000 DWT and above
Containership	400 GT and above	10,000 DWT and above
General cargo ship	400 GT and above	3,000 DWT and above
Refrigerated cargo carrier	400 GT and above	3,000 DWT and above
Combination carrier	400 GT and above	4,000 DWT and above
Ro-ro cargo ship (Vehicle carrier)	400 GT and above	10,000 DWT and above
Ro-ro cargo ship	400 GT and above	1,000 DWT and above
Ro-ro passenger ship	400 GT and above	250 DWT and above
LNG carrier	400 GT and above	10,000 DWT and above
Cruise passenger ship (non-conventional)	400 GT and above	25,000 GT and above

Required EEXI (1/5)


Reduction factor (X) depends on ship type and size

Y, Z value depends on ship type

Required EEXI (2/5)

^{*}However, very large tanker and bulk carrier, small and middle containership, Ro-ro cargo ship and Ro-ro passenger ship are relaxed for technical difficulty to improve the efficiency.

Required EEXI (3/5)

EEDI Reference Line

✓ Required EEXI is set based on the EEDI reference line

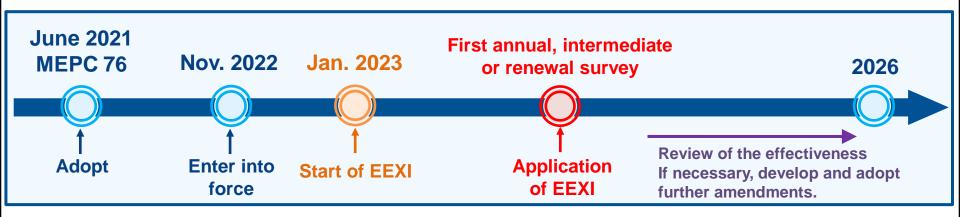
Type of s	ship	Reference Line
Bulk carrier	DWT ≤ 279,000	961.79 x DWT ^{-0.477}
Duik Carrier	DWT > 279,000	961.79 x 279,000 ^{-0.477}
Gas carrier		1120.00 x DWT ^{-0.456}
Tanker		1218.80 x DWT ^{-0.488}
Containership		174.22 x DWT ^{-0.201}
General cargo ship		107.48 x DWT ^{-0.216}
Refrigerated cargo carrier		227.01 x DWT ^{-0.244}
Combination carrier		1219.00 x DWT ^{-0.488}
Ro-ro cargo ship	DWT/GT < 0.3	(DWT/GT) ^{-0.7} x 780.36 x DWT ^{-0.471}
(vehicle carrier)	DWT/GT ≥ 0.3	1812.63 x DWT ^{-0.471}
Do ro corgo obio	DWT ≤ 17,000	1686.17 x DWT ^{-0.498}
Ro-ro cargo ship	DWT > 17,000	1686.17 x 17,000 ^{-0.498}
Do ro possendor obje	DWT ≤ 10,000	902.59 x DWT ^{-0.381}
Ro-ro passenger ship	DWT > 10,000	902.59 x 10,000 ^{-0.381}
LNG carrier		2253.7 x DWT ^{-0.474}
Cruise passenger ship having no	n-conventional propulsion	170.84 x GT ^{-0.214}

Required EEXI (4/5)

Type of ship	Size	Reduction factor (X) %
	200,000 DWT and above	15
Bulk carrier	20,000 - 200,000 DWT	20
	10,000 - 20,000 DWT	0 - 20 *
	15,000 DWT and above	30
Gas carrier	10,000 - 15,000 DWT	20
	2,000 - 10,000 DWT	0 - 20 *
	200,000 DWT and above	15
Tanker	20,000 - 200,000 DWT	20
	4,000 - 20,000 DWT	0 - 20 *
	200,000 DWT and above	50
	120,000 - 200,000 DWT	45
	80,000 - 120,000 DWT	35
Containership	40,000 - 80,000 DWT	30
	15,000 - 40,000 DWT	20
	10,000 - 15,000 DWT	0 - 20 *

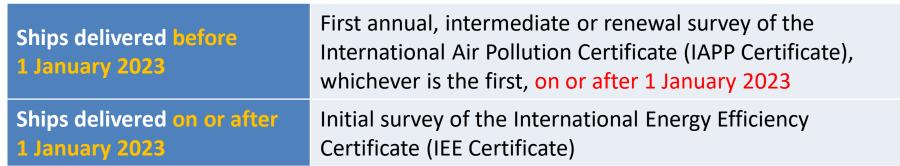
^{*} Reduction factor to be linearly interpolated between the two values dependent upon ship size.

Required EEXI (5/5)



Type of ship	Size	Reduction factor (X) %
Conoral cargo chin	15,000 DWT and above	30
General cargo ship	3,000 - 15,000 DWT	0 - 30 *
Defrigerated cargo carrier	5,000 DWT and above	15
Refrigerated cargo carrier	3,000 - 5,000 DWT	0 - 15 *
Combination corrier	20,000 DWT and above	20
Combination carrier	4,000 - 20,000 DWT	0 - 20 *
Ro-ro cargo ship	10 000 DWT and above	1.5
(vehicle carrier)	10,000 DWT and above	15
Do no congo chin	2,000 DWT and above	5
Ro-ro cargo ship	1,000 - 2,000 DWT	0 - 5 *
De ve pessende de la	1,000 DWT and above	5
Ro-ro passenger ship	250 - 1,000 DWT	0 - 5 *
LNG carrier	10,000 DWT and above	30
Cruise passenger ship having	85,000 GT and above	30
non-conventional propulsion	25,000 - 85,000 GT	0 - 30 *

^{*} Reduction factor to be linearly interpolated between the two values dependent upon ship size.


Timeline of EEXI regulation

■ Timing of EEXI application

- ✓ The amendments to MARPOL ANNEX VI will enter into force on 1 November 2022.
- ✓ EEXI requirements will start from 1st January 2023.
- ✓ The EEXI verification shall take place at the following timing.

Relevant guidelines of EEXI

The relevant guidelines of EEXI regulation were adopted at MEPC.

GUIDELINES ON THE		
METHOD OF CALCULATION		
OF THE ATTAINED EEXI		
(MEPC.350(78))		

- The detailed calculation method of the attained EEXI is provided.
- Only parameters different from the EEDI Calculation Guidelines are prescribed.

GUIDELINES ON SURVEY AND CERTIFICATION OF THE ATTAINED EEXI (MEPC.351(78))

- The details of survey and certification of the attained EEXI is provided.
- The content of EEXI Technical File and additional information for EEXI verification are prescribed.
- GUIDELINES ON THE SHAFT / ENGINE POWER LIMITATION SYSTEM AND USE OF A POWER RESERVE (MEPC.335(76))
- Technical and operational conditions that the SHaPoLi / EPL system should satisfy in complying with the EEXI requirements and in using a power reserve are provided.
- The contents to be included in the Onboard Management Manual (OMM) are prescribed.

EEXI Technical File

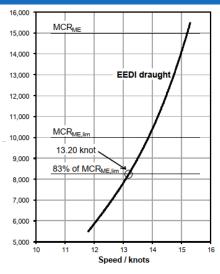
1.1 General information

Shipowner	XXX Shipping Line
Shipbuilder	XXX Shipbuilding Company
Hull no.	12345
IMO no.	94112XX
Ship type	Bulk carrier

1.2 Principal particulars

Length overall	250.0 m
Length between perpendiculars	240.0 m
Breadth, moulded	40.0 m
Depth, moulded	20.0 m
Summer load line draught, moulded	14.0 m
Deadweight at summer load line draught	150,000 tons

1.3 Main engine


Manufacturer	XXX Industries
Туре	6J70A
Maximum continuous rating (MCR _{ME})	15,000 kW x 80 rpm
Limited maximum continuous rating with the	9,940 kW x 72 rpm
Engine Power Limitation installed (MCR _{ME,lim})	
SFC at 75% of MCR _{ME} or 83% of MCR _{ME,lim}	166.5 g/kWh
Number of sets	1
Fuel type	Diesel Oil

1.4 Auxiliary engine

Manufacturer	XXX Industries
Туре	5J-200
Maximum continuous rating (MCR _{AE})	600 kW x 900 rpm
SFC at 50% MCRAE	220.0 g/kWh
Number of sets	3
Fuel type	Diesel Oil

1.5 Ship speed

Ship speed (V_{ref}) (with the Engine Power	13.20 knots
Limitation installed)	

6.8 Calculated value of attained EEXI

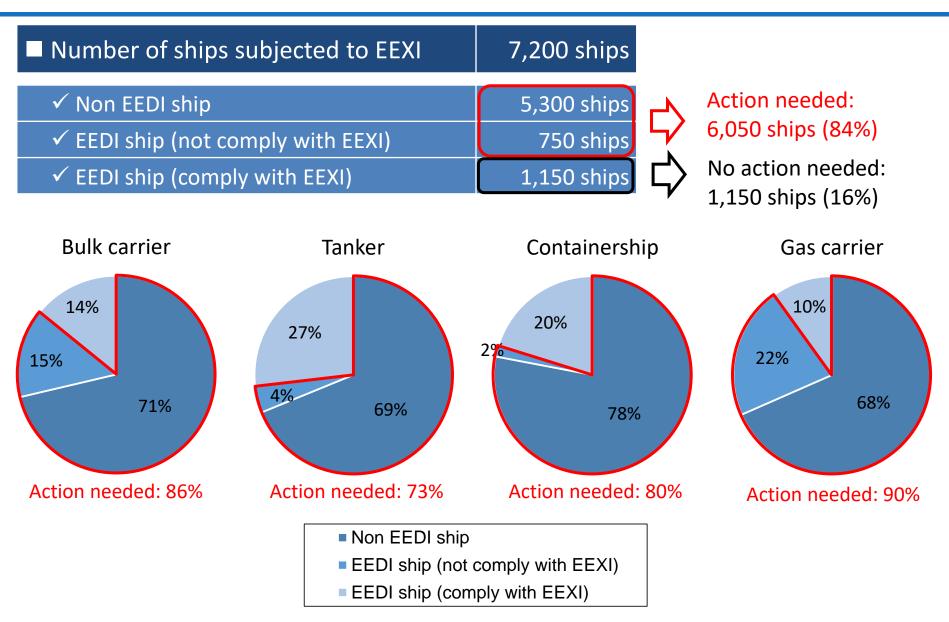
$$\begin{split} EEXI &= \frac{\left(\prod_{j=1}^{M} f_{j}\right) \left(\sum_{i=1}^{nME} P_{ME(i)} \cdot C_{FME(i)} \cdot SFC_{ME(i)}\right) + \left(P_{AE} \cdot C_{FAE} \cdot SFC_{AE}\right)}{f_{i} \cdot f_{c} \cdot f_{l} \cdot Capacity \cdot f_{w} \cdot V_{ref} \cdot f_{m}} \\ &+ \frac{\left\{\left(\prod_{j=1}^{M} f_{j} \cdot \sum_{i=1}^{nPTI} P_{PTI(i)} - \sum_{i=1}^{neff} f_{eff(i)} \cdot P_{AEeff(i)}\right) \cdot C_{FAE} \cdot SFC_{AE}\right\}}{f_{i} \cdot f_{c} \cdot f_{l} \cdot Capacity \cdot f_{w} \cdot V_{ref} \cdot f_{m}} \\ &- \frac{\left(\sum_{i=1}^{neff} f_{eff(i)} \cdot P_{eff(i)} \cdot C_{FME} \cdot SFC_{ME}\right)}{f_{i} \cdot f_{c} \cdot f_{l} \cdot Capacity \cdot f_{w} \cdot V_{ref} \cdot f_{m}} \\ &= \frac{1 \times (8250 \times 3.206 \times 166.5) + (625 \times 3.206 \times 220.0) + 0 - 0}{1 \times 1 \times 1 \times 150000 \times 1 \times 13.20 \times 1} \\ &= 2.41 \left(g - CO_{2}/ton \cdot mile\right) \end{split}$$

attained EEXI: 2.41 g-CO2/ton mile

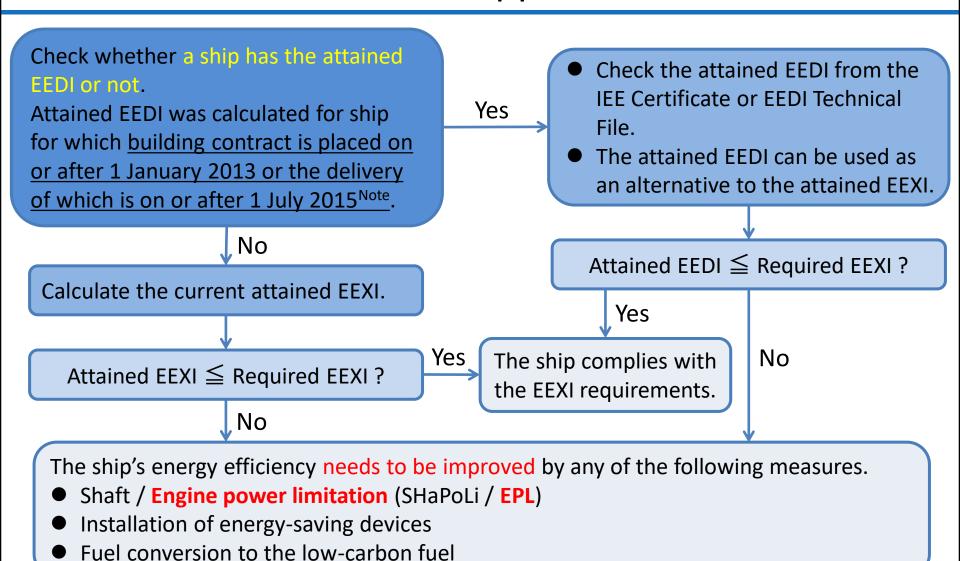
Contents of EEXI Technical File

DWT/GT, Principal particulars of M/E and A/E (e.g. type, MCR, SFC, etc.), MCR $_{lim}$ in case of installing EPL, Ship Speed (i.e. V_{ref}), Estimated speed-power curve(s), Principal particulars and schematic figure of propulsion system and electric power supply system, Estimation process of speed-power curve(s), Description of energy saving equipment(s), Calculation of attained EEXI, (For LNG carrier, relevant information of propulsion system, LNG cargo tank, etc.)

Contents



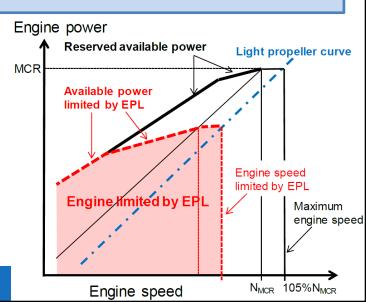
- 1. Initial IMO Strategy on Reduction of GHG emissions from ships
- 2. Outlines of the EEXI regulation
- 3. Preparation for the EEXI regulation


Status of compliance with EEXI on NK classed ship ClassNK

Flow chart of EEXI application

Note: In case of LNG carrier and Cruise passenger ship, building contract is placed on or after 1 September 2015 or the delivery of which is on or after 1 September 2019.

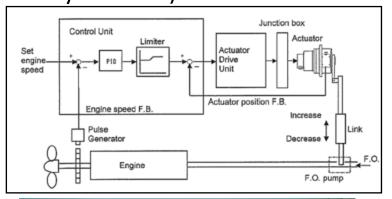
Engine Power Limitation (EPL)

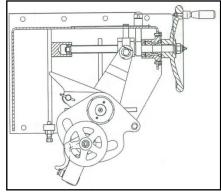


■ What is Engine Power Limitation (EPL) ?

- ✓ Engine Power Limitation (EPL) is a system to improve a ship's energy efficiency by limiting the ship's engine power within the optimum engine setting. As a result, the ship speed will be limited.
- ✓ EPL consists of a simple device which can easily limit the maximum engine power by adjusting a fuel index limiter on the engine control system without retrofitting a complicated system within the current regulatory framework.
- ✓ EPL can be easily installed in a short time during a port without updating EIAPP certificate and the NOx technical file.
- ✓ EPL can be released in the adverse weather conditions. Therefore, the limited engine power does not have to meet the minimum power requirement.

EPL can be utilized as one of the effective measures to improve energy efficiency of existing ships in terms of EEXI.


Installation procedure of EPL (1/2)


Mechanically driven type engine such as old engine type

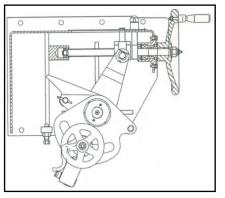
- 1. Changing a set of governor's fuel index limiter
- 2. Adjusting the Mechanical Stop Screw

3. Sealing the Mechanical Stop Screw by wire and so on (confirmed at statutory survey and PSC)

Installation procedure of EPL (2/2)

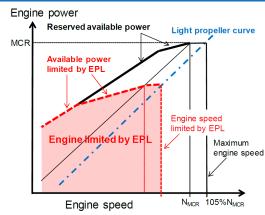
Electronically controlled type engine such as new engine type

Changing a set of governor's fuel index limiter
 (In case of MAN B&W engines, setting the fuel index limit in Chief Limiters)



Source: MAN Energy Solutions

Since the electronically controlled type engine is not physically sealed unlike the mechanical driven type engine, it is confirmed that the EPL had not been released without permission since the last confirmation by checking the data recorded in the data logging program.


Principal requirements of EPL

Principal requirements

- The available power is to be limited by locking fuel index.
- EPL cannot be released without permission from the ship master or the officer in charge of navigational watch (OICNW).
- If EPL is un-limited due to the purpose of securing the safety of a ship or saving life at sea, the reason and relevant information are to be recorded in Onboard Management Manual (OMM).
- EPL system (or each sub system) should be tamper-proof.
- EPL system should be accompanied by OMM for EPL that should be on board the ship for inspection.

Contents of OMM

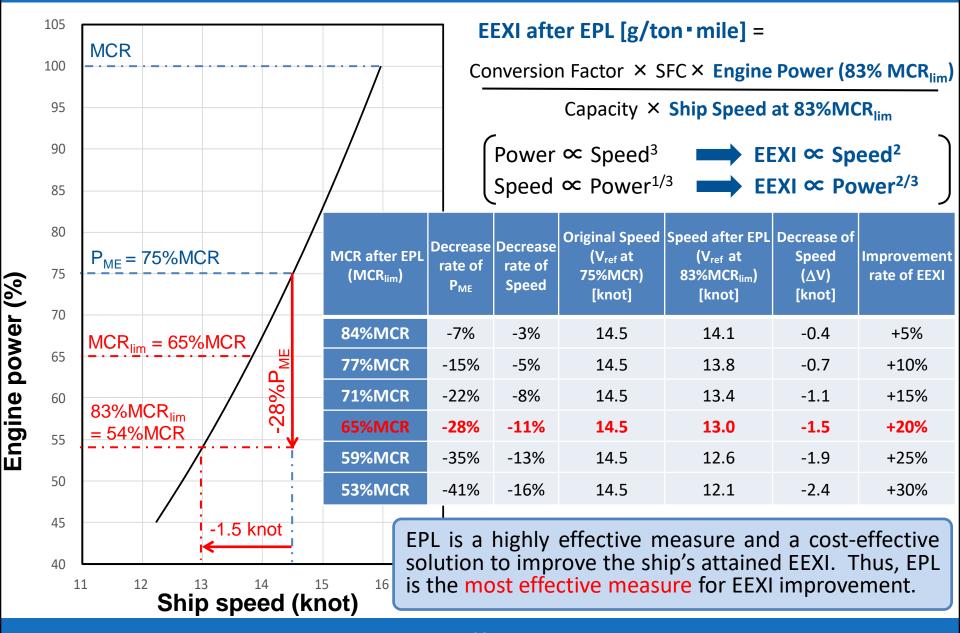
Original MCR (kW x rpm), MCR after installing EPL: MCR_{lim} (kW x rpm), Technical description of EPL system, Sealing method (mechanically controlled engine), Locking and monitoring method (electronically controlled engine), Procedures and methods for releasing EPL, Time required for un-limiting EPL, Procedures for survey by the Administration/RO, Procedure for the report on release of EPL, Administrator of the EPL system, etc.

Acceptable conditions of un-limiting EPL

The un-limiting EPL is only allowed for the purpose of securing the safety of a ship or saving life at sea, consistent with regulation 3.1 of MARPOL Annex VI.

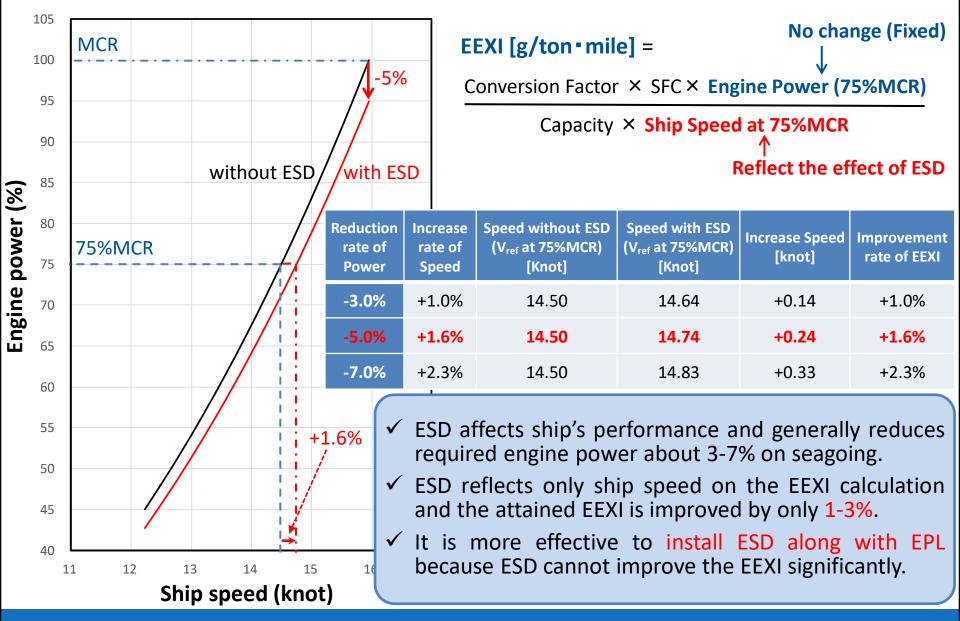
Examples)

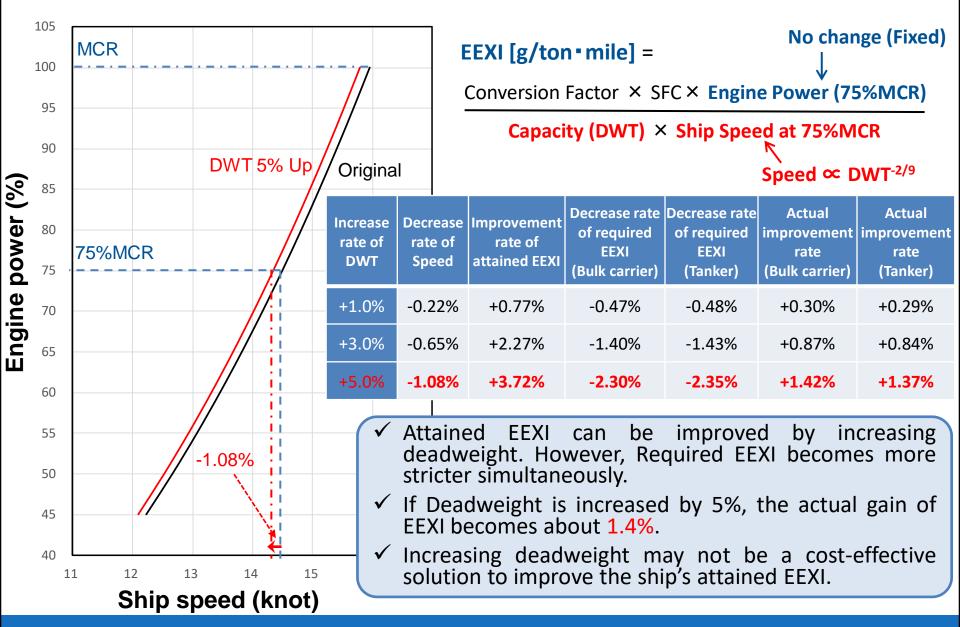
- Operating in adverse weather and ice-infested waters, or avoidance voyaging in such areas
- Participation in search and rescue operations
- Avoidance of pirates
- Engine maintenance (e.g. removing soot, etc.)



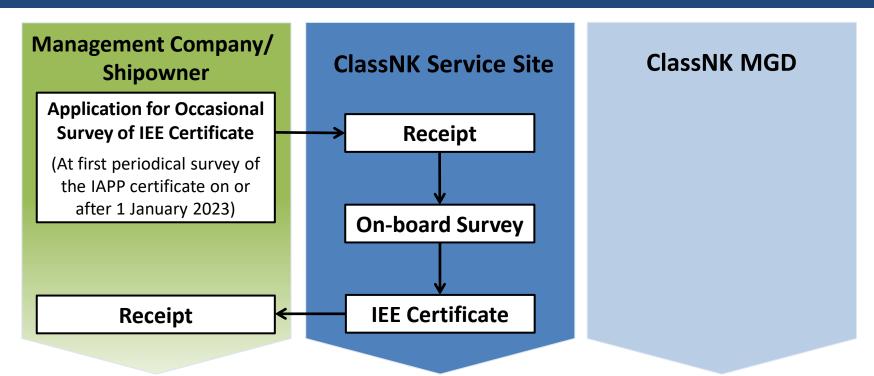
Necessary procedures in cases where EPL is un-limited

- Recording the status in OMM (e.g. reason of the un-limiting, ship speed, maximum unlimited power, beaufort number and wave height, position and timestamp, etc.)
- Notifying Administration or RO
- Reactivating/Replacing EPL system immediately after the risks have been prevented
- Confirmation of the reactivated/replaced EPL system by Administration or RO(Remote confirmation may be acceptable.)


Example of improvement of EEXI by EPL


Example of improvement of EEXI by Energy Saving Device (ESD)

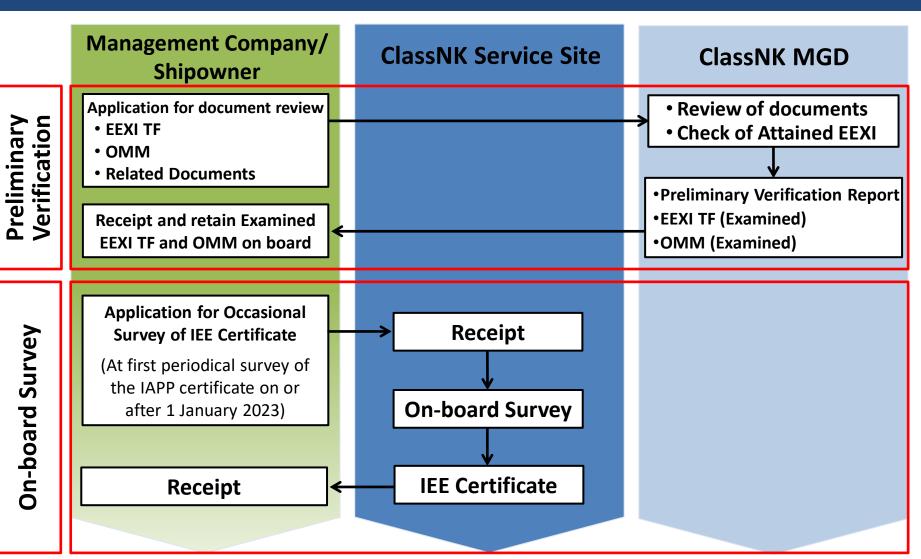
Example of improvement of EEXI by increasing deadweight


Flow of EEXI Verification Process (1/2)

Flow of EEXI Verification Process

- 1. Achieve their Required EEXI by their Attained EEDI
- 2. Other cases

1. Achieve their Required EEXI by their Attained EEDI



Note: The attained EEDI and the EEDI technical file of the ship can be used as an alternative to the attained EEXI and the EEXI technical file, so there is no need to prepare the EEXI technical file in advance.

Flow of EEXI Verification Process (2/2)

2. Other cases

Points of attention for EEXI (1/2)

EEXI Calculation

- Documents on V_{ref} and SFC are required for EEXI calculation.
- EEXI value can be conservatively calculated by using the ship speed given by simple formula and the default value of SFC. However, calculation of accurate EEXI counts to minimize the ship's operation.
- Calculation of accurate EEXI requires the documents on speed-power curve and tank test result provided by mother shipyard and SFC (recorded at NOx measurement) provided by engine manufacturer.

Engine Power Limitation (EPL)

- EEXI assessment beforehand is important to find the impact on ship's operation as ship's maximum speed will be reduced due to EPL.
- Installation of log recording device may be required due to EPL.
- Preparing beforehand is recommended to avoid congestion of EPL works as EEXI
 regulation applies to the existing ships all over the world.

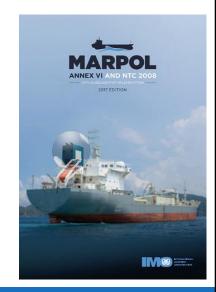
Points of attention for EEXI (2/2)

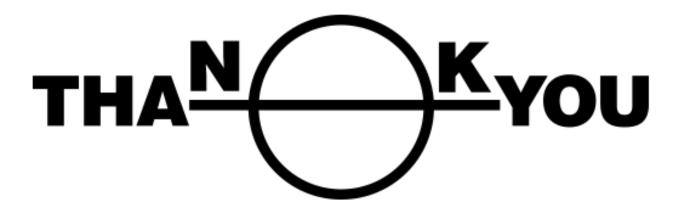
EEXI verification by Class

- Class approval of EEXI technical file and EPL onboard management manual is required.
- Some time is needed for review to confirm the evidence of speed-power curve if ship's speed is calculated by speed-power curve.
- Drawing approval and onboard inspection by class before 1st January 2023 is
 possible although EEXI regulation will take place at the first annual, intermediate or
 renewal survey of IAPP Certificate on or after 1st January 2023.

Cost for conformation to EEXI regulation

- Fee for making EEXI technical file and EPL onboard management manual
- Fee for data of speed-power curve, tank test result, SFC
- Fee for EPL setting
- Fee for EEXI verification by class (drawing approval, onboard inspection, issuance of new IEE certificate)




Inquiry contact

EEDI Section, Marine GHG Certification Department NIPPON KAIJI KYOKAI (ClassNK)

Administration Center 4-7, Kioi-Cho, Chiyoda-Ku, Tokyo 102-8567 Japan

E-mail: eedi@classnk.or.jp

for your kind attention

ClassNK

A World Leader in Ship Classification.