ClassNK Fleet Cost Calculator

https://www.classnk.or.jp/hp/en/info_service/ghg/

User Manual

Version 1.0 (July 2025)

Table of Contents

Calculation Process4
Overall Structure
"Table of contents" sheet6
"Data input" sheet7
"Dashboard" sheet9
"Pivot" sheet12
"Total costs" sheet12
"Blend" sheet13
"Fuel price" sheet14
"2nd fuel type" sheet15
"2nd fuel ratio" sheet16
"EE" sheet17
"GHG intensity limit (IMO)" sheet18
"Contributions (IMO)" sheet19
"Reward threshold (IMO)" sheet
"Reward price (IMO)" sheet21
"EU ratio" sheet
"EUA price" sheet
"WAPS (FuelEU)" sheet
"Exchange rate" sheet
"Other costs" sheet
"Shipbuilding costs" sheet
"DF factor" sheet
"Fuel costs" sheet
"Fuel type" sheet
"IMO (Tier 1) costs" sheet
"IMO (Tier 2) costs" sheet
"CB (IMO)" sheet
"GHG intensity (IMO)" sheet
"Fleet GHG intensity (IMO)" sheet
"WtW GHG (IMO)" sheet
"TtW GHG (IMO)" sheet
"Energy (IMO)" sheet
"Cf (IMO) - 1" sheet
"Cf (IMO) - 2" sheet

"EU-ETS costs" sheet	
"TtW GHG (EU-ETS)" sheet	
"Energy (EU base)" sheet	29
"Energy (EU reg.)" sheet	29
"Cf (EU-MRV)" sheet	29
"FuelEU Maritime costs" sheet	29
"CB (FuelEU)" sheet	29
"GHG intensity (FuelEU)" sheet	29
"Fleet GHG intensity (FuelEU)" sheet	29
"WtW GHG (FuelEU)" sheet	29
"GHG intensity limit (FuelEU)" sheet	29
"Penalty (FuelEU)" sheet	30
"Penalty multiplier (FuelEU)" sheet	30
"RFNBO (FuelEU)" sheet	30
"Cf (FuelEU)" sheet	30
"Ship type" sheet	30
"ME fuel type" sheet	30
"ME (LNG) type" sheet	30
"LCV (IMO)" sheet	31
"LCV (FuelEU)" sheet	31
"GWP" sheet	31

Calculation Process

Note

Some functions of the calculator are available only in newer versions of excel such as Excel 2021 and Microsoft 365. Please note that the calculator may not work properly depending on your version of excel.

The calculator uses macros for some of its functions, so please enable macros before using the calculator for the first time.

Overall Structure

The ClassNK Fleet Cost Calculator consists of 54 sheets, which are categorized into 11 groups.

◆Table of contents

This group contains the sheet for the table of contents.

Input

This group contains the sheet for inputting fleet data and fuel consumption data.

♦Result

This group contains the sheet for displaying the calculation results, including graphs.

For making dashboard

This group contains the sheets for the data necessary for generating the graphs.

Assumptions

This group contains the sheets for assumptions.

Shipbuilding

This group contains the sheets for shipbuilding costs.

♦Fuel

This group contains the sheets for fuel costs.

♦IMO GFI

This group contains the sheets for IMO GFI costs.

♦EU-ETS

This group contains the sheets for EU-ETS costs.

♦FuelEU Maritime

This group contains the sheets for FuelEU Maritime costs.

◆Data

This group contains the sheets for the information required for the calculator's operation and calculations.

An overview of each sheet is provided on the following pages.

"Table of contents" sheet

You can view an overview of each sheet.

Tips & Tricks

Click the links to quickly navigate to each sheet.

You can return to the "Table of contents" sheet from any other sheet.

Tips & Tricks

Master the calculator by learning the meaning of its color-coded text.

Note	
Written in black	関数なし
WITCHI III DIACK	Function not used
Weither in blue	関数あり
written in blue	Function used
Weitten in red	ClassNKによる想定
whitten in red	Assumption by ClassNK

"Data input" sheet

Input the information for the vessels you want to include in the cost calculation.

No effe Input f	ect on the co field	st simulation.									
Fleet i	information	->	-								
No.	IMO No.	Ship name	Year built	Year scrap	ped	Ship type	GT	DWT	TEU	СВМ	Cars
1	1000001	KAIJI MARU 01	2025	•	2050	Bulk carrier	36,000	64,000			
2	1000002	KAIJI MARU 02/	2025		2050	Containership	130,000	150,000	14,000		
3	1000003	KAIJI MARU 03	2025		2050	Crude oil tanker	150,000	300,000			
4	1000004	KAIJI MARU 04	2025		2050	Product/Chemical tanker	30,000	50,000			
5	1000005	KAIJI MARU 05	2025		2050	LPG carrier	53,000	60,000		100,000	
6	1000006	KAIJI MARU 06	2025		2050	LNG carrier	110,000	100,000		170,000	
7	1000007	KAIJI MARU 07	2025		2050	Vehicle carrier	80,000	30,000			9,0
						A A A A A A A A A A A A A A A A A A A		•			
	Year b	built		Ye	ear s	crapped	There is no	impact	on the	cost ca	lcula
oot oo	loulation at	tarta from this us	(Th	e cost calc	ulatio	on ends with this year)		(Po	foronce)	

Tips & Tricks

When considering a replacement (fuel conversion) for a specific vessel, try inputting the data for the same vessel twice for a comparison.

Tips & Tricks

You can exclude shipbuilding costs from the result, but let's start by inputting the data.

Note

Please ensure that the "Remaining payment period" does not exceed the vessel's useful life (the period from the year built to the year scrapped).

		χ.							(Ple	ease also r	efer to the	e costs pei	r tonne of	fuel.)	
			Select ship							6					
			Year	0.01	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
			Shipbuilding	g costs	4,375,000	4,375,000	4,375,000	4,375,000	4,375,000	4,375,000	4,375,000	4,375,000	0 8 000 056	0 254 500	0 822 225
			IMO GFI (Tier	r 1) costs	2,412,000	2,412,000	2,412,000	4,420,970	4,642,018	1,095,918	0,000,777	0,404,010	0,909,050	9,354,509 0	9,022,235
			IMO GFI (Tier	r 2) costs	07.074	100.070	100 417	(115,937)	0	(3,940,223)	(3,626,668)	(3,313,113)	(2,999,558)	(2,686,003)	(2,372,448)
			FuelEU Marit	ime costs	34,949	38,444	41,939	(278,259)	(278,259)	(1,077,225)	(1,077,225)	(1,077,225)	(1,077,225)	(1,077,225)	(1,051,910)
			Other costs		1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
			Total costs (/1	t HFOeq)	1,582	1,952,525	1,958,556	9,499,737	9,845,679	1,611	1,751	9,471,836 1,894	5,854,879 1,167	1,319	1,400,380
		Regu	latory costs (/I	t HFOeq)	24	33	34	(59)	(34)	(1,003)	(940)	(878)	(815)	(752)	(684)
	Fuel	select ->	2025												
	FC (I	HFO base)	Energy sha	are	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
		• 5,000	t 🎈	5.6%	HFO	HFO	HFO	Biodiesel (B-30)	Biodiesel (B-30)	Biodiesel (B-100)					
		20,000	t \	22.2%	LNC	LNC									
					LING	LING	LING	LNG	LNG	LNG	LNG	LNG	LNG	LNG	bio-methane
		15,000	t	16.7%	HFO	HFO	HFO	LNG HFO	LNG HFO	LNG e-ammonia	LNG e-ammonia	LNG e-ammonia	LNG e-ammonia	LNG e-ammonia	bio-methane e-ammonia
		15,000 5,000	t	16.7% 5.6%	HFO HFO	HFO HFO	HFO HFO	LNG HFO HFO	LNG HFO HFO	LNG e-ammonia bio-methanol	LNG e-ammonia bio-methanol	LNG e-ammonia bio-methanol	LNG e-ammonia bio-methanol	LNG e-ammonia bio-methanol	bio-methane e-ammonia bio-methanol
		15,000 5,000 10,000	et et	16.7% 5.6% 11.1%	HFO HFO LPG (Propane)	HFO HFO LPG (Propane)	LING HFO HFO LPG (Propane)	LNG HFO HFO LPG (Propane)	LNG HFO HFO LPG (Propane)	LNG e-ammonia bio-methanol LPG (Propane)	LNG e-ammonia bio-methanol LPG (Propane)	LNG e-ammonia bio-methanol LPG (Propane)	LNG e-ammonia bio-methanol LPG (Propane)	LNG e-ammonia bio-methanol LPG (Propane)	bio-methane e-ammonia bio-methanol LPG (Propane)
		15,000 5,000 10,000 25,000	et et	16.7% 5.6% 11.1% 27.8%	HFO HFO LPG (Propane) LNG	HFO HFO LPG (Propane) LNG	LNG HFO LPG (Propane) LNG	LNG HFO HFO LPG (Propane) LNG	LNG HFO HFO LPG (Propane) LNG	LNG e-ammonia bio-methanol LPG (Propane) LNG	LNG e-ammonia bio-methanol LPG (Propane) LNG	LNG e-ammonia bio-methanol LPG (Propane) LNG	LNG e-ammonia bio-methanol LPG (Propane) LNG	LNG e-ammonia bio-methanol LPG (Propane) LNG	bio-methane e-ammonia bio-methanol LPG (Propane) bio-methane
		15,000 5,000 10,000 25,000 10,000	t t t	16.7% 5.6% 11.1% 27.8% 11.1%	HFO HFO LPG (Propane) LNG HFO	HFO HFO LPG (Propane) LNG HFO	LNG HFO LPG (Propane) LNG HFO	LNG HFO LPG (Propane) LNG HFO	LNG HFO HFO LPG (Propane) LNG HFO	LNG e-ammonia bio-methanol LPG (Propane) LNG e-hydrogen	bio-methane e-ammonia bio-methanol LPG (Propane) bio-methane e-hydrogen				
		15,000 5,000 10,000 25,000 10,000	t t t t	16.7% 5.6% 11.1% 27.8% 11.1%	HFO HFO LPG (Propane) LNG HFO	HFO HFO LPG (Propane) LNG HFO	LING HFO LPG (Propane) LNG HFO	LNG HFO LPG (Propane) LNG HFO	LNG HFO LPG (Propane) LNG HFO	LNG e-ammonia bio-methanol LPG (Propane) LNG e-hydrogen	bio-methane e-ammonia bio-methanol LPG (Propane) bio-methane e-hydrogen				
Annual	fue	15,000 5,000 10,000 25,000 10,000	t t t t t	16.7% 5.6% 11.1% 27.8% 11.1%	HFO HFO LPG (Propane) LNG HFO	HFO HFO LPG (Propane) LNG HFO .'s share	HFO HFO LPG (Propane) LNG HFO	LNG HFO LPG (Propane) LNG HFO fleet's	LNG HFO HFO LPG (Propane) LNG HFO	LNG e-ammonia bio-methanol LPG (Propane) LNG e-hydrogen	bio-methane e-ammonia bio-methanol LPG (Propane) bio-methane e-hydrogen				
Annual	fue (HF	15,000 5,000 25,000 10,000 25,000 10,000 el consun O base)	t t t t t t	16.7% 5.6% 11.1% 27.8% 11.1%	HFO HFO LPG (Propane) LNG HFO e vessel total er	HFO HFO LPG (Propane) LNG HFO .'s share	HFO HFO LPG (Propane) LNG HFO	LNG HFO LPG (Propane) LNG HFO fleet's	LNG HFO LPG (Propane) LNG HFO	LNG e-ammonia bio-methanol LPG (Propane) LNG e-hydrogen	bio-methane e-ammonia bio-methanol LPG (Propane) bio-methane e-hydrogen				

Select the vessel for which you want to check the costs.

You can check the annual costs.

Tips & Tricks

Vessels with high energy consumption (fuel consumption) have the most significant impact on the fleet's total regulatory costs. Therefore, we recommend using the "Energy share" data to prioritize evaluating fuel conversion for these vessels first.

FAQ

- Q. For a dual-fuel vessel, can the regulatory costs be calculated accurately if I provide the annual consumption on an HFO-equivalent basis?
- A. Yes, that will work fine. The calculator calculates all costs by converting the HFObased consumption figure into an equivalent energy consumption value. As such, consumption data for alternative fuels is not required.

"Dashboard" sheet

You can calculate the total cost for the entire fleet and display the results as a graph.

Data update

(After changing any inputs such as fleet data, fuel types, or assumptions, please be sure to click to update the data.) (Please note that the update process may take approximately 20 seconds.)

Estimation result

Total costs (Annual costs)

Total costs (Annual costs - Net)

Total costs (Cumulative costs)

Total costs (Cumulative costs - Net)

Number of ships

◆Fleet GHG intensity (IMO GFI)

Base target (including ClassNK's assumptions)

Direct compliance target (including ClassNK's assumptions)

◆Fleet GHG intensity (FuelEU Maritime)

Total costs comparison (Annual costs)

Total costs comparison (Annual costs - Net)

Total costs comparison (Cumulative costs)

Total costs comparison (Cumulative costs - Net)

Tips & Tricks

Here's a useful tip for analyzing a fuel conversion: Input the same vessel twice—once with its current fuel and once with the new fuel—to create a side-by-side comparison.

"Pivot" sheet

This sheet contains the pivot tables that serve as the data source for the graphs on the "Dashboard" sheet. When you click "Refresh" on the "Dashboard" sheet, this "Pivot" sheet will also be updated.

Tips & Tricks

By adding new pivot tables, you can perform analyses that are more tailored to your company's specific needs.

"Total costs" sheet

This sheet is used to generate the source data for the graphs on the "Dashboard" sheet. When you click "Refresh" on the "Dashboard" sheet, this "Total costs" sheet will also be updated.

"Blend" sheet

You can check the required fuel mix to meet the annual GHG intensity base target and direct compliance target, as well as the indicative fuel prices needed to achieve that mix.

Select/Input field										
Sciece input neid										an
10 GFI										0.11
GHG intensity limit	Target	Unit	2025	2026	2027	2028	2029	2030		
Reduction rate	Base target		%			4.0	% 6.0	% 8.0'	%	Eu
GHG intensity limit	Base target	gCO2eq/	MJ			89.5680	87.70200	85.83600) 🗉 👘	T G
Reduction rate	Direct compliance target		%			17.0	% 19.0	% 21.0	%	
GHG intensity limit	Direct compliance target	gCO2eq/	MJ			77.4390	0 75.57300	73.70700)	
Fuel characterizes		- 40								
ruei snare to mee	t the GHG Intensity Base targ	<u>,et"</u>								
Fuel type	GHG intensity (Well-to-Wake)	Unit	2025	2026	2027	2028	2029	2030		F
	/-	A					o/ o	D/ EO 7/		FU
HFO	95.5 gCO2eq/1	VIJ energy base share				69.8	% 60.2	70 50.7	%	
HFO Biodiesel (B-30)	95.5 gCO2eq/1 75.9 gCO2eq/1	dJ energy base share dJ energy base share				69.8 30.2	% 60.2 % 39.8	% 50.7 % 49.3	% %	
HFO Biodiesel (B-30) Fuel type	95.5 gCO2eq/1 75.9 gCO2eq/1 Lower calorific value	MJ energy base share MJ energy base share Unit	2025	2026	2027	30.2 2028	% 80.2 % 39.8 2029	% 50.7 % 49.3 2030	%	
HFO Biodiesel (B-30) Fuel type HFO	95.5 gCO2eq7 75.9 gCO2eq7 Lower calorific value 40,200 MJ/ton	MJ energy base share MJ energy base share Unit ne tonne base share	2025	2026	2027	69.8 30.2 2028 69.3	% 60.2 % 39.8 <mark>2029</mark> % 59.7	% 50.7 % 49.3 2030 % 50.1	% %	
HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30)	95.5 gC02eq/t 775.9 gC02eq/t Lower calorific value 40,200 MJ/ton 39,300 MJ/ton	MJ energy base share energy base share Unit ne tonne base share ne tonne base share	2025	2026	2027	69.8 30.2 2028 69.3 30.7	% 60.2 % 39.8 <mark>2029</mark> % 59.7' % 40.3	% 50.7 % 49.3 <mark>2030</mark> % 50.1 % 49.9	% %	(F
HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30)	95.5 gCO2ea/1 75.9 gCO2ea/1 Lower calorific value 40.200 MJ/ton 39,300 MJ/ton	MJ energy base share energy base share Unit ne tonne base share ne tonne base share	2025	2026	2027	69.8 30.2 2028 69.3 30.7	% 60.2' % 39.8' 2029 % 59.7' % 40.3'	% 50.7 % 49.3 2030 % 50.1 % 49.9	% % %	(1
HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30) Fuel share to mee	95.5 gCO2ea/1 75.9 gCO2ea/1 Lower calorific value 40.200 MJ/ton 39.300 MJ/ton t the GHG intensity "Direct co	(J) energy base share (J) energy base share Unit ne tonne base share ne tonne base share ne tonne base share	2025	2026	2027	69.8 30.2 2028 69.3 30.7	% 60.2' % 39.8' 2029 % 59.7' % 40.3'	% 50.7 % 49.3 <mark>2030</mark> % 50.1 % 49.9	% %	(F
HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30) Fuel share to mee Fuel type	45.5 gCO2ea/ 75.9 gCO2ea/ Lower calorific value 40.200 MJ/ton 39.300 MJ/ton t the GHG intensity "Direct co GHG intensity (Well-to-Wake)	 anergy base share anergy base share unit unit tonne base share tonne base share mpliance target" Unit 	2025	2026	2027 2027	69.8 30.2 2028 69.3 30.7 2028	% 60.2' % 39.8' 2029 % 59.7' % 40.3' 2029	% 50.7 % 49.3 2030 % 50.1 % 49.9 2030	% % %	(Fu
HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30) Fuel share to mee Fuel type HFO	49.5.9(CO2eq/ 75.9 gCO2eq/ Lower calorific value 40,200 MJ/ton 39,300 MJ/ton t the GHG intensity "Direct col GHG intensity (Well-to-Wake) 95.5 gCO2eq/	 anergy base share anergy base share unit tonne base share tonne base share tonne base share mpliance target" Unit anergy base share 	2025 2025	2026	2027 2027	2028 69.3 69.3 30.7 2028 7.8	% 60.2' % 39.8' 2029 % 59.7' % 40.3' % 40.3' % Breach	 50.7 49.3 2030 50.1 50.1 49.9 49.9 2030 Breach 	% % %	(F
HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30) Fuel share to mee Fuel type HFO Biodiesel (B-30)	49.5.8(CO2eq/ 75.9gCO2eq/ 75.9gCO2eq/ 40,200 MJ/ton 39,300 MJ/ton t the GHG intensity "Direct con GHG intensity (Well-to-Wake) 95.5gCO2eq/ 75.9gCO2eq/	 anergy base share anergy base share unit unit unit unit unit 	2025 2025	2026	2027 2027	69,8 30.2 2028 69.3 30.7 2028 7.8 92.2	% 60.2' % 39.8' 2029 % 59.7' % 40.3' 2029 % Breach % Breach	 50.7 49.3 2030 50.1 50.1 49.9 49.9 49.9 Breach Breach Breach 	% % %	(F
HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30) Fuel type	US-5 gC02ea/1 75.9 gC02ea/1 Lower calorific value 40,200 MJ/ton 39,300 MJ/ton t the GHG intensity "Direct con GHG intensity (Well-to-Wake) 95.5 gC02ea/1 75.9 gC02ea/1 75.9 gC02ea/1	 anergy base share anergy base share Unit tonne base share ane tonne base share ane tonne base share anergy base share anergy base share anergy base share Unit 	2025 2025 2025	2026 2026 2026	2027 2027 2027	2028 2028 69.3 30.7 2028 7.8 92.2 2028	% 60.2' % 39.8' 2029 % 59.7' % 40.3' % 40.3' % 850 8 Breach % Breach % Breach 2029	 50.7 49.3 2030 50.1' 49.9' 49.9' 2030 Breach Breach Breach 2030 	% % %	(F
HFO Biodiesel (B-30) Fuel type HFO Biodiesel (B-30) Fuel share to mee Fuel type HFO Biodiesel (B-30) Fuel type HFO	49.5.8(CO2eq/ 75.9 gCO2eq/ 75.9 gCO2eq/ 40.200 MJ/ton 39.300 MJ/ton t the GHG intensity "Direct col GHG intensity (Well-to-Wake) 95.5 gCO2eq/ 75.9 gCO2eq/ Lower calorific value 40.200 MJ/ton	 anergy base share anergy base share unit tonne base share tonne base share mpliance target" Unit unit anergy base share anergy base share anergy base share tonne base share 	2025 2025 2025	2026 2026 2026	2027 2027 2027	69.8 30.2 2028 69.3 30.7 2028 7.8 92.2 2028 7.6	% 80.2' % 39.8' 2029 % 59.7' % 40.3' % 40.3' % Breach % Breach 8 Breach 2029 % Breach	% 50.7 % 49.3 2030 % 50.1 % 49.9 2030 Breach Breach Breach Breach Breach Breach		(F Fu

IMO GFI's annual base target and direct compliance target Fuel share to meet the annual base target (Energy base) Fuel share to meet the annual base target (Fuel tonne base of each fuel type) Fuel share to meet the annual direct compliance target (Energy base) Fuel share to meet the annual direct compliance target (Energy base)

Fuel B's price th	reshold to meet the GHG intensity	<u>y "Direct complian</u>	<u>ce tar</u>	get"				
Fuel type	GHG intensity (Well-to-Wake)	Lower calorific value	Fuel pr 2025	1ce (USD/1 2026	tonne) 2027	2028	2029	2030
Fuel A HFO	95.5 gCO2eq/MJ	40,200 MJ/tonne				482.40	482.40	482.4
Fuel B Biodiesel (B-30)	75.9 gCO2eq/MJ	39,300 MJ/tonne				606.13	-	

Upper price limit for Fuel B for regulatory compliance when using Fuel A and Fuel B

(If the price of Fuel B exceeds this value, it is more cost-effective to use only Fuel A and pay the associated penalty.)

A similar feature is also available for the FuelEU Maritime.

Tips & Tricks

Sourcing low-carbon fuels in substantial volumes is challenging. Therefore, the first step is to understand the fuel mix required to meet the annual GHG intensity base target and direct compliance target, and then plan your fuel procurement strategically.

"Fuel price" sheet

You can set fuel prices for the period up to 2050.

Input field												
Fuel price												
table_Fuel_price_N	٨J											
Fuel type	Unit	Ref. price	Decline rate	2025	2026	2027	2028	2029	2030	2031	2032	20
HFO	USD/GJ		0.0%									
LFO	USD/GJ		0.0%									
MDO/MGO	USD/GJ		0.0%									
Biodiesel (B-24)	USD/GJ		-5.0%									
Biodiesel (B-30)	USD/GJ		-5.0%									
Biodiesel (B-100)	USD/GJ		-5.0%									
LNG	USD/GJ		0.0%									
bio-methane	USD/GJ		-2.0%									
e-methane	USD/GJ		3.0%									
Gray methanol	USD/GJ		0.0%									
bio-methanol	USD/GJ		2.0%									
e-methanol	USD/GJ		3.0%									
Gray ammonia	USD/GJ		0.0%									
e-ammonia	USD/GJ		5.0%									
LPG (Propane)	USD/GJ		0.0%									
LPG (Butane)	USD/GJ		0.0%									
bio-LPG	USD/GJ		2.0%									
e-LPG	USD/GJ		3.0%									
Gray hydrogen	USD/GJ		0.0%									
e-hydrogen	USD/GJ		5.0%									

You can set the annual percentage change for fuel prices.

You can also view fuel prices on a per-tonne basis.

table_Fuel_price_t												
Fuel type	Unit	Ref. price	Decline rate	2025	2026	2027	2028	2029	2030	2031	2032	20
HFO	USD/t	:	0.09	6								
LFO	USD/t	:	0.09	6								
MDO/MGO	USD/t	:	0.09	6								
Biodiesel (B-24)	USD/t		-5.09	6								
Biodiesel (B-30)	USD/t		-5.09	6								
Biodiesel (B-100)	USD/t	:	-5.09	6								
LNG	USD/t	:	0.09	6								
bio-methane	USD/t	:	-2.09	6								
e-methane	USD/t		3.09	6								
Gray methanol	USD/t		0.09	6								
bio-methanol	USD/t	:	2.09	6								
e-methanol	USD/t	:	3.09	6								
Gray ammonia	USD/t		0.09	6								
e-ammonia	USD/t		5.09	6								
LPG (Propane)	USD/t		0.09	6								
LPG (Butane)	USD/t	:	0.09	6								
bio-LPG	USD/t	:	2.09	6								
e-LPG	USD/t	:	3.09	6								
Gray hydrogen	USD/t		0.09	6								
e-hydrogen	USD/t		5.09	6								

"2nd fuel type" sheet

You can set a 2nd fuel type.

Input field																
Second fu	el type															
table_Seco	nd_fuel_t	type														
Category	ID	No.	IMO No.	Ship name	Year built	Year scrapped	Ship type	Main engine fuel type	Main engine for LNG Fuel of	consumption (HFO base)	2025	2026	2027	2028	2029	2030
Second fuel type	0.5258	1	9999999	KAIJI MARU 01	2025	2050	Bulk carrier	Fuel_oil	0	5,000 1	Biodiesel (B-30)					
Second fuel type	0.3903	2	9999999	KAIJI MARU 02	2025	2050	Containership	LNG	(Otto dual fuel slow speed)	20,000	MDO/MGO	MD0/MG0	MDO/MGO	MDO/MGO	MDO/MGO	MDO/MGO
Second fuel type	0.2545	3	9999999	KAIJI MARU 03	2025	2050	Crude oil tanker	Ammonia	0	15,000	e-ammonia	e-ammonia	e-ammonia	e-ammonia	e-ammonia	e-ammonia
Second fuel type	0.0692	4	9999999	KAIJI MARU 04	2025	2050	Product/Chemical tanker	Methanol	0	5,000 1	bio-methanol	bio-methanol	bio-methanol	bio-methanol	bio-methanol	bio-methanol
Second fuel type	0.7353	5	9999999	KAIJI MARU 05	2025	2050	LPG carrier	LPG	0	10,000	Biodiesel (B-30)					
Second fuel type	0.0959	6	9999999	KAIJI MARU 06	2025	2050	LNG carrier	LNG	(Diesel dual fuel slow speed)	25,000	bio-methane	bio-methane	bio-methane	bio-methane	bio-methane	bio-methane
Second fuel type	0.4377	7	9999999	KAIJI MARU 07	2025	2050	Vehicle carrier	Hydrogen	0	10,000	e-hydrogen	e-hydrogen	e-hydrogen	e-hydrogen	e-hydrogen	e-hydrogen

Tips & Tricks

For dual-fuel vessels, you can simulate a more realistic operational scenario by selecting the main alternative fuel on the "Data input" sheet and the pilot fuel on this "2nd fuel type" sheet. Furthermore, feel free to experiment with various combinations, such as LNG and bio-methane.

"2nd fuel ratio" sheet

You can set the annual usage percentage for the 2^{nd} fuel type.

Input field																
Second fue	el ratio															
table_Secor	nd_fuel_ra	atio														
Category	ID	No.	IMO No.	Ship name	Year built	Year scrapped	Ship type	Main engine fuel type	Fairl consumption (HTC basis)	Unit	2025	2026	2027	2028	2029	2030
Second fuel ratio	0.7675		1 9999999	KAIJI MARU 01	2025	2050	Bulk carrier	Fuel_oil	5,000 t	9	6 10.0%	5 10.0%	10.0%	10.0%	10.0%	10.0%
Second fuel ratio	0.7755		2 9999999	KAIJI MARU 02	2025	2050	Containership	LNG	20,000 t	9	6 10.0%	5 10.0%	10.0%	10.0%	10.0%	10.0%
Second fuel ratio	0.2059		3 9999999	KAIJI MARU 03	2025	2050	Crude oil tanker	Ammonia	15,000 t	9	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%
Second fuel ratio	0.6249		4 9999999	KAIJI MARU 04	2025	2050	Product/Chemical tanke	Methanol	5,000 t	9	6 5.0%	5.0%	5.0%	5.0%	5.0%	5.0%
Second fuel ratio	0.1246		5 9999999	KAIJI MARU 05	2025	2050	LPG carrier	LPG	10,000 t	9	6 5.0%	5.0%	5.0%	5.0%	5.0%	5.0%
Second fuel ratio	0.8624		6 9999999	KAIJI MARU 06	2025	2050	LNG carrier	LNG	25,000 t	9	6 _ 5.0%	5.0%	5.0%	5.0%	5.0%	5.0%
Second fuel ratio	0.5147		7 9999999	KAIJI MARU 07	2025	2050	Vehicle carrier	Hydrogen	10,000 t	9	6 / 5.0%	5.0%	5.0%	5.0%	5.0%	5.0%

For dual-fuel vessels that require pilot fuel, the cell is displayed in red to prevent input omissions.

Tips & Tricks

First, check the required fuel share for annual GHG intensity compliance on the "Blend" sheet. Then, try setting the usage percentage on this "2nd fuel ratio" sheet accordingly.

"EE" sheet

You can set the year-on-year (YoY) energy efficiency improvement rate.

Input field																	
Energy efficient	ciency																
table_Energ	y_efficie	псу															
Category	ID	No.	IMO No.	Ship name	Year built	Year scrapped	Ship type	Main engine fuel type	Fast consumption (HPC-back)	Unit	2025	2	026	2027	2028	2029	2030
Energy_efficiency	0.8341	1	9999999	KAIJI MARU 01	2025	2050	Bulk carrier	Fuel_oil	5,000 t	9	%	-	1.0%	1.0%	1.0%	1.0%	1.0%
Energy_efficiency	0.1722	2	9999999	KAIJI MARU 02	2025	2050	Containership	LNG	20,000 t	9	%	-	0.0%	0.0%	5.0%	0.0%	0.0%
Energy_efficiency	0.6987	3	9999999	KAIJI MARU 03	2025	2050	Crude oil tanker	Ammonia	15,000 t	9	%	-	0.0%	0.0%	0.0%	0.0%	0.0%
Energy_efficiency	0.7728	4	9999999	KAIJI MARU 04	2025	2050	Product/Chemical tanke	[,] Methanol	5,000 t	9	%	-	0.0%	0.0%	0.0%	0.0%	0.0%
Energy_efficiency	0.8577	5	9999999	KAIJI MARU 05	2025	2050	LPG carrier	LPG	10,000 t	9	%	-	0.0%	0.0%	0.0%	0.0%	0.0%
Energy_efficiency	0.9003	6	9999999	KAIJI MARU 06	2025	2050	LNG carrier	LNG	25,000 t	9	%	-	0.0%	0.0%	0.0%	0.0%	0.0%
Energy_efficiency	0.3410	7	9999999	KAIJI MARU 07	2025	2050	Vehicle carrier	Hydrogen	10,000 t	0	%	-	0.0%	0.0%	0.0%	0.0%	0.0%

Tips & Tricks

If you are planning to operate reduced speeds (slow steaming), please input the expected energy efficiency improvement rate from that measure.

Similarly, if you are planning to install (retrofit) energy-saving technologies such as windassisted propulsion systems, please input the anticipated improvement rate resulting from the retrofit.

"GHG intensity limit (IMO)" sheet

You can set the annual GHG intensity targets (base target and direct compliance target) required by the IMO GFI regulations.

Input field															
WtW GHG intensity lin	nit (IMO GFI)														
table_WtW_GHG_inter	nsity_limit_IMO_GFI														
GHG intensity limit	Target	Unit	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Reduction rate	Base target	%	4.0%	6.0%	8.0%	12.4%	16.8%	21.2%	25.6%	30.0%	37.0%	44.0%	51.0%	58.0%	65.0%
GHG intensity limit	Base target	gCO2eq/MJ	89.56800	87.70200	85.83600	81.73080	77.62560	73.52040	69.41520	65.31000	58.77900	52.24800	45.71700	39.18600	32.65500
Reduction rate	Direct compliance target	%	17.0%	19.0%	21.0%	25.4%	29.8%	34.2%	38.6%	43.0%	50.0%	57.0%	63.9%	70.9%	77.9%
GHG intensity limit	Direct compliance target	gCO2eq/MJ	77.43900	75.57300	73.70700	69.60180	65.49660	61.39140	57.28620	53.18100	46.66866	40.15632	33.64398	27.13164	20.61930

Tips & Tricks

Once the regulatory targets for GHG intensity are finalized, you can set those values on this "GHG intensity limit (IMO)" sheet to quickly assess the impact of the regulations.

"Contributions (IMO)" sheet

You can set the unit price of contributions and the sale price of surplus units for the IMO's GFI regulations.

Input field														
WtW GHG contribution price (IMO GFI)														
table_WtW_GHG_contribution_price_IMO_GFI														
GHG contribution price Target	Unit	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
GHG contribution price Base Target	USD/tCO2eq	380	380	380	380	380	380	380	380	380	380	380	380	380
GHG contribution price Direct Compliance Target	USD/tCO2eq	100	100	100	100	100	100	100	100	100	100	100	100	100
Surplus unit price -	USD/tCO2eq	380	380	380	380	380	380	380	380	380	380	380	380	380

Tips & Tricks

Once the unit price of the contribution is finalized, you can set that value on the "Contributions (IMO)" sheet to quickly assess the financial impact of the regulations.

"Reward threshold (IMO)" sheet

You can set the GHG intensity threshold to be eligible for a "Reward" under the IMO's GFI regulations.

Input field							_							
Reward threshold (IN	IO GFI)													
table_Reward_thresho	ld_IMO_GFI													
Reward threshold	Unit	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Reduction rate	%													
	«CO2e«/MI	10	10	10	10	10	10	10	14	14	14	14	1/	14

Tips & Tricks

If the threshold is changed, you can update the value on this "Reward threshold (IMO)" sheet to quickly assess the regulation's impact.

Please note: As of July 2025, the calculation method for "Rewards" under the IMO's GFI regulations has not yet been finalized. Therefore, the calculator (Version 1.0) does not currently support "Reward" calculations.

"Reward price (IMO)" sheet

You can set the "Reward" price unit under the IMO's GFI regulations.

Input f	ield													
Rewar	rd price (IMO GF	1)												
table_l	Reward_price_IM	O_GFI												
Unit		2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
	USD/tonCO2eq	C	0	0	0	0	0	(0	0	0	0	D	0 0

Tips & Tricks

Once the "Reward" unit price is finalized, you can set that value on this "Reward price (IMO)" sheet to quickly assess the regulation's impact.

Please note: As of July 2025, the methodology for calculating "Rewards" under the IMO's GFI regulations has not yet been finalized. Therefore, the calculator (Version 1.0) does not currently support "Reward" calculations.

"EU ratio" sheet

You can set the percentage of annual energy consumption that is subject to EU regulations (i.e., EU-ETS and FuelEU Maritime).

Input field																
EU ratio (E	U-ETS)(F	FuelEU	Maritime)													
table_EU_ra	atio															
Category	ID	No.	IMO No.	Ship name	Year built	Year scrapped	Ship type	Main engine fuel type	Fusiconcerption (IFO base)	Unit	2025	2026	2027	2028	2029	2030
EU ratio	0.4274	1	9999999	KAIJI MARU 01	2025	2050	Bulk carrier	Fuel_oil	5,000 t	%	10%	10%	10%	10%	10%	10%
EU ratio	0.1542	2	9999999	KAIJI MARU 02	2025	2050	Containership	LNG	20,000 t	%	10%	10%	10%	10%	10%	10%
EU ratio	0.7629	3	9999999	KAIJI MARU 03	2025	2050	Crude oil tanker	Ammonia	15,000 t	%	10%	10%	10%	10%	10%	10%
EU ratio	0.3332	4	9999999	KAIJI MARU 04	2025	2050	Product/Chemical tanker	Methanol	5,000 t	%	10%	10%	10%	10%	10%	10%
EU ratio	0.0717	5	9999999	KAIJI MARU 05	2025	2050	LPG carrier	LPG	10,000 t	%	10%	10%	10%	10%	10%	10%
EU ratio	0.5204	6	9999999	KAIJI MARU 06	2025	2050	LNG carrier	LNG	25,000 t	%	10%	10%	10%	10%	10%	10%
EU ratio	0.1651	7	9999999	KAIJI MARU 07	2025	2050	Vehicle carrier	Hydrogen	10,000 t	%	10%	10%	10%	10%	10%	10%

Note

Please input the final percentage of energy consumption that is subject to EU regulations, after factoring in the specific rules for "at berth in EU ports", "intra-EU voyages", and "voyages between EU and non-EU ports." Note that this is not simply the percentage of your EU-related voyages.

"EUA price" sheet

You can set the price per EU Allowance (EUA).

Input field								
EUA price								
table_EUA_price								
Unit	Annual rate of increase	2025		2026	2027	2028	2029	2030
EUR/tonne CO2eq	2	2.0% 70	0.0	71.4	72.8	74.3	75.8	77.3
USD/tonne CO2eq	2	2.0% 78	3.7	80.2	81.8	83.5	85.1	86.8
				\langle				

Annual increase rate for the EUA price EUA price for 2025

"WAPS (FuelEU)" sheet

You can set the reward factor for the GHG intensity reduction achieved by installing windassisted propulsion systems under the FuelEU Maritime.

Input field																
Reward fac	tor for w	ind-ass	isted propul	sion systems	(FuelEU M	laritime)										
table_Rewar	rd_factor	_for_win	d-assisted_p	propulsion_sy	stems_FuelE	EUMaritime										
Category	ID	No.	IMO No.	Ship name	Year built	Year scrapped	Ship type	Main engine fuel type	Faelconcamption (1970 base)	Unit	2025	2026	2027	2028	2029	2030
Renard lactor for WAPS (PostEU Maritims)	0.3935	1	9999999	KAIJI MARU 01	2025	2050	Bulk carrier	Fuel_oil	5,000 t	%	0%	0%	0%	1%	0%	0%
Renard laster for WAPS (FustEd Maritims)	0.0136	2	9999999	KAIJI MARU 02	2025	2050	Containership	LNG	20,000 t	%	0%	0%	0%	3%	0%	0%
Panad late for WAPS (FuelDJ Martine)	0.0868	3	9999999	KAIJI MARU 03	2025	2050	Crude oil tanker	Ammonia	15,000 t	%	0%	0%	0%	5%	0%	0%
Panad late for WAPS (FuelDJ Maritim)	0.4206	4	9999999	KAIJI MARU 04	2025	2050	Product/Chemical tanke	Methanol	5,000 t	%	0%	0%	0%	/ 0%	0%	0%
Revent lactor for WAPS (PostEU Maritimo)	0.5413	5	9999999	KAIJI MARU 05	2025	2050	LPG carrier	LPG	10,000 t	%	0%	0%	0%	0%	0%	0%
Panard lacter for WAPS (PostEd Maritime)	0.1733	6	9999999	KAIJI MARU 06	2025	2050	LNG carrier	LNG	25,000 t	%	0%	0%	0%	0%	0%	0%
Revard laste for WAPS. (FustRd Maritime)	0.8398	7	9999999	KAIJI MARU 07	2025	2050	Vehicle carrier	Hydrogen	10,000 t	%	0%	0%	0%	0%	0%	0%

Reward factor (1% or 3% or 5%)

"Exchange rate" sheet

You can set the EUR-USD exchange rate.

Input field																
Exchange rate																
table_Exchange_rate	е															
Unit	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
EUR/USD	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89

Note

The prices for EUA and penalties under FuelEU Maritime are denominated in Euro (EUR). As our calculator calculates costs in US Dollars (USD), the exchange rate you set on this "Exchange rate" sheet will be applied to the EUR-to-USD conversion.

"Other costs" sheet

You can set other costs.

Input fie	əld																
Other o	osts																
table_0	ther_	costs															
Catego	ry I	ID	No.	IMO No.	Ship name	Year built	Year scrapped	Ship type	Main engine fuel type	Fuel concumption (HPO Seco)	Unit	2025	2026	2027	2028	2029	2030
6_Other c	osts	0.1119	1	9999999	KAIJI MARU 01	2025	2050	Bulk carrier	Fuel_oil	5,000 t	USD	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
6_Other c	osts	0.4479	2	9999999	KAIJI MARU 02	2025	2050	Containership	LNG	20,000 t	USD	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
6_Other c	osts	0.4336	3	9999999	KAIJI MARU 03	2025	2050	Crude oil tanker	Ammonia	15,000 t	USD	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
6_Other c	osts	0.3190	4	9999999	KAIJI MARU 04	2025	2050	Product/Chemical tanker	Methanol	5,000 t	USD	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
6_Other c	osts	0.0224	5	9999999	KAIJI MARU 05	2025	2050	LPG carrier	LPG	10,000 t	USD	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
6_Other c	osts	0.5831	6	9999999	KAIJI MARU 06	2025	2050	LNG carrier	LNG	25,000 t	USD	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
6_Other c	osts	0.7725	7	9999999	KAIJI MARU 07	2025	2050	Vehicle carrier	Hydrogen	10,000 t	USD	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000

Tips & Tricks

Fuel conversion involves various cost increases beyond just shipbuilding and fuel costs. Use this "Other costs" sheet to input any other company-specific costs. You can also account for revenue by inputting a negative cost value.

This concludes the main sheets for data input and cost review.

On the following pages, we provide an overview of the other sheets. All of these sheets store data required for the simulation and the calculation results for each cost, so please feel free to review their contents as needed.

"Shipbuilding costs" sheet

This sheet shows the shipbuilding cost for each vessel.

"DF factor" sheet

This provides a guideline for the additional shipbuilding cost when adopting an alternative fueled vessel (compared to a conventional fueled vessel). The factor set here is used to calculate the "Ref. ship price (DF)" on the "Data input" sheet, but it does not affect the final shipbuilding cost estimation results.

"Fuel costs" sheet

This sheet shows the fuel cost for each vessel.

"Fuel type" sheet

This is a list of the fuel types assumed in the calculator. The fuel types set here are reflected as the options for the annual fuel type selection on the "Data input" sheet.

"IMO (Tier 1) costs" sheet

This sheet shows the Tier 1 contribution cost for each vessel under the IMO's GFI regulations.

"IMO (Tier 2) costs" sheet

This sheet shows the Tier 2 contribution cost for each vessel under the IMO's GFI regulations.

"CB (IMO)" sheet

This sheet shows the compliance balance for each vessel under the IMO's GFI regulations.

"GHG intensity (IMO)" sheet

This sheet shows the WtW (Well-to-Wake) GHG intensity for each vessel under the IMO's GFI regulations.

"Fleet GHG intensity (IMO)" sheet

This sheet shows the average WtW (Well-to-Wake) GHG intensity for the entire fleet under the IMO's GFI regulations.

"WtW GHG (IMO)" sheet

This sheet shows the WtW (Well-to-Wake) GHG emissions for each vessel under the IMO's GFI regulations.

"TtW GHG (IMO)" sheet

This sheet shows the TtW (Tank-to-Wake) GHG emissions for each vessel under the IMO's GFI regulations.

"Energy (IMO)" sheet

This sheet shows the energy consumption for each vessel under the IMO's GFI regulations.

"Cf (IMO) - 1" sheet

This is a list of the conversion factors for each fuel as published in the IMO LCA Guidelines. This sheet is not used in the calculator (Version 1.0).

"Cf (IMO) - 2" sheet

This is a list of the conversion factors used on a provisional basis to calculate the IMO's GFI costs.

As of July 2025, the values for most conversion factors have not yet been determined in the IMO LCA Guidelines, and this list includes many assumptions made by ClassNK.

"EU-ETS costs" sheet

This sheet shows the EU-ETS cost for each vessel.

"TtW GHG (EU-ETS)" sheet

This sheet shows the TtW GHG emissions subject to the EU-ETS for each vessel.

"Energy (EU base)" sheet

This sheet shows the energy consumption for each vessel (for all voyages), calculated based on the lower calorific value of each fuel as listed in the FuelEU Maritime regulations.

"Energy (EU reg.)" sheet

This sheet shows the energy consumption subject to EU-ETS and FuelEU Maritime for each vessel.

"Cf (EU-MRV)" sheet

This is a list of the conversion factors for each fuel as published in the EU-MRV regulations. It includes some assumptions made by ClassNK.

"FuelEU Maritime costs" sheet

This sheet shows the FuelEU Maritime cost for each vessel.

"CB (FuelEU)" sheet

This sheet shows the compliance balance for each vessel under FuelEU Maritime.

"GHG intensity (FuelEU)" sheet

This sheet shows the WtW GHG intensity for each vessel under FuelEU Maritime.

"Fleet GHG intensity (FuelEU)" sheet

This sheet shows the average WtW GHG intensity for the entire fleet under FuelEU Maritime.

"WtW GHG (FuelEU)" sheet

This sheet shows the WtW GHG emissions for each vessel under FuelEU Maritime.

"GHG intensity limit (FuelEU)" sheet

This shows the limit for WtW GHG intensity under FuelEU Maritime.

"Penalty (FuelEU)" sheet

This shows the penalty unit price under FuelEU Maritime. The penalty unit price for each vessel varies depending on its annual WtW GHG intensity value.

"Penalty multiplier (FuelEU)" sheet

This sheet shows the penalty multiplier for each vessel if it becomes subject to penalties for two or more consecutive years under FuelEU Maritime.

"RFNBO (FuelEU)" sheet

This shows the multiplier for RFNBOs^{*} under FuelEU Maritime. *RFNBO:Renewable Fuels of Non-Biological Origin

"Cf (FuelEU)" sheet

This is a list of the conversion factors for each fuel as published in the FuelEU Maritime regulations.

It includes some assumptions made by ClassNK.

"Ship type" sheet

This is a list of the vessel types assumed in the calculator. The vessel types set here are reflected as the options for "Ship type" on the "Data input" sheet.

"ME fuel type" sheet

This is a list of the main engine fuel types assumed in the calculator. The types set here are reflected as the options for "ME" on the "Data input" sheet.

"ME (LNG) type" sheet

This is a list of the combustion cycles for LNG-fueled main engines assumed in the calculator. The combustion cycles set here are reflected as the options for "ME (for LNG)" on the "Data input" sheet.

"LCV (IMO)" sheet

This is a list of the Lower Calorific Value (LCV) for each fuel as published in the IMO LCA Guidelines.

As of July 2025, the LCV values for most fuels have not yet been determined in the IMO LCA Guidelines, and this list includes many assumptions made by ClassNK.

"LCV (FuelEU)" sheet

This is a list of the Lower Calorific Value (LCV) for each fuel as published in the FuelEU Maritime regulations.

It includes some assumptions made by ClassNK.

"GWP" sheet

This is a list of the Global Warming Potential (GWP) factors used in the calculator. Please note that the referenced GWP values differ depending on the regulations.

For any inquiries regarding this manual, please contact the following:

NIPPON KAIJI KYOKAI Green Transformation Center Tel : +81-3-5226-2031 E-mail : <u>gxc@classnk.or.jp</u>

NIPPON KAIJI KYOKAI

Planning Division Green Transformation Center 4-7 Kioi-cho, Chiyoda-ku, Tokyo 102-8567, JAPAN Tel : +81-3-5226-2031 E-mail : gxc@classnk.or.jp

www.classnk.com