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Simplified Operational Guidance for Preventing Parametric Rolling1 
― Extension of Grim’s Effective Wave Concept ― 

 
Naoya UMEDA, Yuta UCHIDA 

1. INTRODUCTION 

Since the case of the C11 class post-Panamax containership in head waves in 1998 1), many accidents involving the loss of 
onboard containers due to the large heel of containerships in head, quartering and following waves have been reported 2). Most 
large heels cannot be explained by a linear theory and are presumed to be due to parametric rolling. Parametric rolling typically 
means that only if the wave height exceeds a threshold, one roll cycle occurs during two encounter wave cycles, and the actual 
roll period is close to the natural roll period of the ship. In the C11 class containership accident, about 800 containers were lost 
or damaged due to a large heel of about 40°. Similar large parametric roll motions have also been observed in model experiments.  

Although parametric rolling has been widely known in the theoretical research field 3), it was often regarded as a phenomenon 
that occurs in regular waves but may be unrealistic in irregular waves 4). However, after Paulling et al. 5) observed parametric 
rolling of a free-running containership model in natural astern waves in San Francisco Bay in 1974 and Umeda et al. 6) realised 
parametric rolling of a free-running containership model in artificial short-crested irregular following waves in a model basin, 
parametric roll in following and quartering waves was recognised as a real threat to actual containerships at sea. Therefore, the 
International Maritime Organization (IMO) in 1995 7) circulated operational guidance for following and quartering seas, which 
includes ship-independent guidance for parametric rolling focusing on the ratio of the encounter wave period to the ship's natural 
roll period. Later, partly as a result of a document from the United States 8) on the C11 class containership accident, the IMO in 
2002 9) started to develop means for preventing parametric rolling that also included head waves. Initially, the operational 
guidance in 1995 was expanded in a straightforward manner in 2007 to deal with parametric rolling in head waves 10). In 2020, 
Interim Guidelines on the Second Generation Intact Stability Criteria including parametric rolling 11) were approved for trial use, 
and in 2022 the related Explanatory Notes 12) providing detailed calculation procedures were published. These new criteria, 
which are based on physics, deal not only with design but also with operational aspects, and provide simple two-level 
vulnerability criteria for ship design. If a ship under a certain condition fails to comply with them, its safety level may be 
demonstrated by probabilistic use of time-domain numerical simulation in short-crested irregular waves. Generally speaking, 
containerships and car carriers may often find it difficult to comply with these assessments because of their transom stern and 
exaggerated bow flare 13). Thus, if the design measure is impractical, safe operation based on ship-dependent and physics-
oriented operational guidance is required. For this purpose, full-probabilistic operational guidance and a simplified version can 
be utilised. The former is not always practical due to the high computational cost in terms of time. Although the example of the 
latter in the explanatory notes specifies only the ship speed, actual operation to avoid danger should also include the ship’s 
course.  

For practical use, operational guidance specifying not only the ship’s speed but also its course is preferable. Therefore, this 
article attempts to provide a methodology to develop practical operational guidance for avoiding parametric rolling. 

2. APPROACH ADOPTED FOR VULNERABILITY CRITERIA 

The first level vulnerability criterion in the second generation intact stability criteria is the condition for the occurrence of 
parametric rolling regardless of the sea state. The second level consists of first and second checks: The former uses the weighted 
average of the occurrence conditions in typical sea states, while the latter uses the probability of sea states resulting in a 
parametric roll amplitude exceeding the critical magnitude. If any one of these three criteria is satisfied, the ship under the 
                                                           
1 This article describes the details of the content read at the Spring Meeting of the Japan Society of Naval Architects and Ocean 
Engineers held in November 2022 19). 
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specified loading condition is judged as not vulnerable to parametric rolling. Among the three, only the second check of the 
second level vulnerability criteria can explicitly specify the critical heel angle, which depends on the lashing system, for example, 
the tier number of the lashing bridge. Since the second check of the second level vulnerability criteria seems most suitable for 
operational applications, this article will in principle attempt to adopt this methodology. 

In this method, if a short-term sea state defined by the Bretschneider wave spectrum with the significant wave height and 
mean wave period is given, its spatial waveform is approximated by a regular wave using the Grim effective wave concept, and 
its 1/3 maximum largest amplitude is then used as the effective wave amplitude for estimating the GZ variation in a regular 
longitudinal wave. The parametric roll amplitude is determined by the encounter wave period depending on the ship speed and 
heading by numerically solving the uncoupled roll motion equation in the time domain. Here, the ship speed is set to the 
navigational speed, and the heading is uniformly distributed; that is, the effect of the wave heading on GZ variation is ignored 
as a conservative estimate. As a result, the encounter wave period can be calculated by changing the ship speed with the 
directional cosine of the wave heading. Finally, the probability of sea states with computed roll amplitudes larger than the critical 
heel angle is calculated by using the wave scatter diagram. If the obtained probability exceeds the acceptable value, the ship 
under the subject loading condition is judged vulnerable to parametric rolling failure. 

3. SIMPLIFIED OPERATIONAL GUIDANCE IN THE IMO INTERIM GUIDELINES AS AN EXAMPLE 

An example of the simplified operational guidance for parametric rolling is shown in paragraph 4.5.6.2.3 of the Interim 
Guidelines on the Second Generation Intact Stability Criteria. The parametric roll amplitude in longitudinal waves is calculated 
for the significant wave height, the zero-crossing mean wave period and the ship speed by using the method for the second 
check of the second level vulnerability criteria. If the amplitude is larger than 25°, the Guidelines request the ship master to 
avoid dangerous conditions defined by the significant wave height, the zero-crossing mean wave period and the ship speed, 
regardless of the wave heading. Although the ship speed is represented by “vs” without definition in the Guidelines, judging 
from the text nearby, it could be read as the actual ship speed. If so, this guidance does not provide a dangerous ship course 
other than a dangerous ship speed. 

On the other hand, section 4.5.6.2 of the IMO Interim Guidelines explicitly states that any guidance can be used if its required 
safety level is higher than that estimated by the full-probabilistic guidance using a numerical simulation in the time domain. 
Therefore, more advanced guidance specifying both the dangerous speed and course should be developed. 

4. GENERALISATION OF THE GRIM EFFECTIVE WAVE CONCEPT 

The second check of the second level vulnerability criteria utilises the Grim effective wave concept 14) to replace irregular 
waves with regular ones. Grim's paper only provides a formula for long-crested irregular longitudinal waves. However, the 
operational guidance is expected to be used for actual ship operational conditions, which means short-crested irregular waves 
with ship headings different from the main wave direction. Therefore, a formula for short-crested irregular quartering waves is 
derived here. 

Normally, in a seakeeping theory, a ship response such as ship motions in irregular waves is handled stochastically under the 
assumption that the relationship between the incident wave and the ship response is linear. This means the spectrum of the ship 
responses in irregular waves can be estimated by the product of the incident wave spectrum and the response amplitude operator 
squared. Then, the significant amplitude of ship response is calculated by the Rayleigh distribution with the 0th moment of the 
ship response spectrum. However, in the case of restoring variation due to waves, the relationship between incident waves and 
the restoring variation is nonlinear. In the example shown in Fig. 1 for a small trawler in regular waves whose length is equal to 
the ship length and crest or trough is located at the ship centre, the relationship between the incident wave amplitude and the 
wave-induced righting arm GZ at the heel angle of 10° has different slopes for the wave crest (negative value of the horizontal 
axis) and trough (positive value). Since the transom stern can be out of water when a wave trough is at the ship’s stern, the 
waterplane breadth at the stern can be zero. On the other hand, when a wave crest is at the ship's stern, the waterplane breadth 
at the stern can be slightly larger than the calm-water value. In addition, when the relative wave elevation exceeds the deck edge 
level, the waterplane breadth can change nonlinearly. As a result, the restoring variation due to waves differs from the basic 
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assumption used in a seakeeping theory. On the other hand, the restoring variation can be evaluated even hydrostatically with 
the relative wave profile, and therefore can be regarded as nonlinear but without memory. The Grim effective wave concept 
utilises this fact. 

 
Fig. 1 GZ variation due to a regular wave whose length is equal to the ship’s length and the crest or trough is 

located at the ship’s centre for a small trawler at the heel angle of 10° 15)  

 
Fig. 2 Coordinate systems 

As shown in Fig. 2, the space-fixed coordinate system O- and the body-fixed coordinate system G- x,y are used. Here, 
the O- axis indicates the main wave direction,  is the direction of a component wave, G is the centre of ship gravity (𝜉𝜉�, 𝜂𝜂�) 
and �̅�𝜒 is the ship’s heading from the main wave direction. Thus, the following relation exists. 

𝜉𝜉 𝜉 𝜉𝜉� + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�̅�𝜒 − 𝑦𝑦𝑥𝑥𝑦𝑦𝑦𝑦�̅�𝜒 
𝜂𝜂 𝜉 𝜂𝜂� + 𝑥𝑥𝑥𝑥𝑦𝑦𝑦𝑦�̅�𝜒 + 𝑦𝑦𝑥𝑥𝑥𝑥𝑥𝑥�̅�𝜒 

(1) 

The wave elevation 𝜁𝜁� as a function of position and time is represented as follows: 

𝜁𝜁�(𝜉𝜉, 𝜂𝜂, 𝜉𝜉) 𝜉 � � �2𝑆𝑆(𝜔𝜔, 𝜔𝜔)𝑑𝑑𝜔𝜔𝑑𝑑𝜔𝜔
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amplitude in discretisation is 𝑎𝑎� = �2𝑆𝑆(𝜔𝜔𝜔 𝜔𝜔)𝑑𝑑𝜔𝜔𝑑𝑑𝜔𝜔. (𝑖𝑖 = 𝑖𝜔𝑖𝑖𝑖) 
The effective wave is represented by Fig. 3 and Eq. (3). 

 
Fig. 3 Profile of the Grim effective wave 

𝜁𝜁����(𝑥𝑥𝜔 𝑥𝑥) = 𝑎𝑎(𝑥𝑥) − 𝜁𝜁���(𝑥𝑥) cos
2𝜋𝜋
𝐿𝐿 𝑥𝑥𝑥 𝑥 𝑥 𝑥  (3) 

The effective wave can be determined by the least square method within the range of ship length -L/2<x<L/2 and its centre 
line y=0. Here, L indicates the ship length. Thus, the following value, J, should be minimised. 

� = � �𝜁𝜁�(𝜉𝜉𝜔 𝜉𝜉𝜔 𝑥𝑥) − 𝜁𝜁����(𝑥𝑥𝜔 𝑥𝑥)��𝑑𝑑𝑥𝑥
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�� �⁄
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𝑔𝑔 �(𝜉𝜉� + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�̅�𝑥)𝑥𝑥𝑥𝑥𝑥𝑥𝜔𝜔� + (𝜉𝜉� + 𝑥𝑥𝑥𝑥𝑖𝑖𝑥𝑥�̅�𝑥)𝑥𝑥𝑖𝑖𝑥𝑥𝜔𝜔�� + 𝜓𝜓��
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𝑔𝑔 �(𝜉𝜉� + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�̅�𝑥)𝑥𝑥𝑥𝑥𝑥𝑥𝜔𝜔� + (𝜉𝜉� + 𝑥𝑥𝑥𝑥𝑖𝑖𝑥𝑥�̅�𝑥)𝑥𝑥𝑖𝑖𝑥𝑥𝜔𝜔�� + 𝜓𝜓��
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𝑔𝑔 �(𝜉𝜉� + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�̅�𝑥)𝑥𝑥𝑥𝑥𝑥𝑥𝜔𝜔� + (𝜉𝜉� + 𝑥𝑥𝑥𝑥𝑖𝑖𝑥𝑥�̅�𝑥)𝑥𝑥𝑖𝑖𝑥𝑥𝜔𝜔�� + 𝜓𝜓��� �𝑎𝑎(𝜉𝜉�𝜔 𝜉𝜉�𝜔 �̅�𝑥𝜔 𝑥𝑥)

− 𝜁𝜁���(𝜉𝜉�𝜔 𝜉𝜉�𝜔 �̅�𝑥𝜔 𝑥𝑥𝑥) cos �
2𝜋𝜋
𝐿𝐿 𝑥𝑥�� − �𝑎𝑎(𝜉𝜉�𝜔 𝜉𝜉�𝜔 �̅�𝑥𝜔 𝑥𝑥)��

+ 2 �𝑎𝑎(𝜉𝜉�𝜔 𝜉𝜉�𝜔 �̅�𝑥𝜔 𝑥𝑥)𝜁𝜁���(𝜉𝜉�𝜔 𝜉𝜉�𝜔 �̅�𝑥𝜔 𝑥𝑥𝑥) cos �
2𝜋𝜋
𝐿𝐿 𝑥𝑥�� − �𝜁𝜁���(𝜉𝜉�𝜔 𝜉𝜉�𝜔 �̅�𝑥𝜔 𝑥𝑥𝑥)�

� cos� �2𝜋𝜋𝐿𝐿 𝑥𝑥� � 𝑑𝑑𝑥𝑥𝑥  

(4) 

Therefore, the following formula should be satisfied. 

0= ��
�����

 

=2� �∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥 �𝜔𝜔𝑖𝑖𝑥𝑥 − 𝜔𝜔𝑖𝑖2
𝑔𝑔 ��𝜉𝜉𝐺𝐺 + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥��)𝑥𝑥𝑥𝑥𝑥𝑥𝜔𝜔𝑖𝑖 + �𝜉𝜉𝐺𝐺 + 𝑥𝑥𝑥𝑥𝑖𝑖𝑥𝑥𝑥𝑥��𝑥𝑥𝑖𝑖𝑥𝑥𝜔𝜔𝑖𝑖� + 𝜓𝜓𝑖𝑖�𝑖𝑖𝑖𝑖=𝑖 � cos �2𝜋𝜋𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥 +𝐿𝐿 2⁄

−𝐿𝐿 2⁄

2 �𝑎𝑎�𝜉𝜉𝐺𝐺𝜔 𝜉𝜉𝐺𝐺𝜔 𝑥𝑥�𝜔 𝑥𝑥� � 𝑥𝑥𝑥𝑥𝑥𝑥 �2𝜋𝜋𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥
𝐿𝐿
2
−𝐿𝐿2

� − 2� 𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒�𝜉𝜉𝐺𝐺𝜔 𝜉𝜉𝐺𝐺𝜔 𝑥𝑥�𝜔 𝑥𝑥𝑥�𝑥 cos2 �
2𝜋𝜋
𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥𝐿𝐿𝐿2

−𝐿𝐿𝐿2  

=2� �∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑥𝑥𝑥𝑥 �𝜔𝜔𝑖𝑖𝑥𝑥 − 𝜔𝜔𝑖𝑖2
𝑔𝑔 ��𝜉𝜉𝐺𝐺�𝑥𝑥𝑥𝑥𝑥𝑥𝜔𝜔𝑖𝑖 + �𝜉𝜉𝐺𝐺�𝑥𝑥𝑖𝑖𝑥𝑥𝜔𝜔𝑖𝑖�� −

𝜔𝜔𝑖𝑖2
𝑔𝑔 �(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�)𝑥𝑥𝑥𝑥𝑥𝑥𝜔𝜔𝑖𝑖 + (𝑥𝑥𝑥𝑥𝑖𝑖𝑥𝑥𝑥𝑥�)𝑥𝑥𝑖𝑖𝑥𝑥𝜔𝜔𝑖𝑖�� +𝑖𝑖𝑖𝑖=𝑖

𝐿𝐿 2⁄
−𝐿𝐿 2⁄

𝜓𝜓𝑖𝑖�� cos �2𝜋𝜋𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥 − 2� 𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒�𝜉𝜉𝐺𝐺𝜔 𝜉𝜉𝐺𝐺𝜔 𝑥𝑥�𝜔 𝑥𝑥𝑥�𝑥 cos2 �
2𝜋𝜋
𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥𝐿𝐿𝐿2

−𝐿𝐿𝐿2  

(5) 
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=2 � �∑ 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 �𝜔𝜔𝑖𝑖𝑡𝑡 𝑡 𝜔𝜔𝑖𝑖2

𝑔𝑔 ��𝜉𝜉𝐺𝐺�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + �𝜂𝜂𝐺𝐺�𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐𝑖𝑖� 𝑡 𝜔𝜔𝑖𝑖2

𝑔𝑔 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(𝜒𝜒� 𝑡 𝑐𝑐𝑖𝑖) + 𝜓𝜓𝑖𝑖�𝑁𝑁𝑖𝑖𝑖𝑖 � cos �2𝜋𝜋
𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥𝐿𝐿 2⁄

𝑡𝐿𝐿 2⁄ 𝑡 𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿 

=2 � �∑ 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 �𝜔𝜔𝑖𝑖𝑡𝑡 𝑡 𝜔𝜔𝑖𝑖2

𝑔𝑔 ��𝜉𝜉𝐺𝐺�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + �𝜂𝜂𝐺𝐺�𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐𝑖𝑖� + 𝜓𝜓𝑖𝑖� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑡 𝜔𝜔𝑖𝑖2

𝑔𝑔 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(𝜒𝜒� 𝑡 𝑐𝑐𝑖𝑖)�𝑁𝑁𝑖𝑖𝑖𝑖 � cos �2𝜋𝜋
𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥𝐿𝐿 2⁄

𝑡𝐿𝐿 2⁄ 𝑡

𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿  

Using the following relation, 

� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑡 𝜔𝜔��

𝑔𝑔 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)� cos �2𝜋𝜋
𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥

� �⁄

�� �⁄
 

𝑖 𝑖
2 � 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑡 𝜔𝜔��

𝑔𝑔 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�) + 2𝜋𝜋
𝐿𝐿 𝑥𝑥� + 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑡 𝜔𝜔��

𝑔𝑔 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�) 𝑡 2𝜋𝜋
𝐿𝐿 𝑥𝑥� 𝑑𝑑𝑥𝑥

� �⁄

�� �⁄
 

𝑖
𝑡2 𝜔𝜔��𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)𝑐𝑐𝑖𝑖𝑠𝑠 �𝜔𝜔��𝐿𝐿

2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)�

�𝜔𝜔�
�

𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)�
�

𝑡 �2𝜋𝜋
𝐿𝐿 �

�
 

(6), 

the Grim effective wave 𝜁𝜁��� is obtained as follows: 

𝜁𝜁���(𝜉𝜉�, 𝜂𝜂�, �̅�𝜒,  𝑡𝑡𝑡 𝐿𝐿) 𝑖 4
𝐿𝐿 � 𝑎𝑎�

𝑖

�2𝜋𝜋
𝐿𝐿 �

�
𝑡 �𝜔𝜔�

�
𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)�

�

�

���
 

� �𝜔𝜔��

𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)� 𝑐𝑐𝑖𝑖𝑠𝑠 �𝜔𝜔��

2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)� 

� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜔𝜔�𝑡𝑡 𝑡 𝜔𝜔��

𝑔𝑔 �𝜉𝜉�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� + 𝜂𝜂�𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐�� + 𝜓𝜓�� 

𝑖 � 𝑎𝑎�

�𝜔𝜔��𝐿𝐿
𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)� 𝑐𝑐𝑖𝑖𝑠𝑠 �𝜔𝜔��𝐿𝐿

2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)�

𝜋𝜋� 𝑡 �𝜔𝜔�
�𝐿𝐿

2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(�̅�𝜒 𝑡 𝑐𝑐�)�
�

�

���
 

� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜔𝜔�𝑡𝑡 𝑡 𝜔𝜔��

𝑔𝑔 �𝜉𝜉�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� + 𝜂𝜂�𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐�� + 𝜓𝜓�� 

𝑖 � � �2𝑆𝑆���(𝜔𝜔, 𝑐𝑐𝑡 𝐿𝐿, �̅�𝜒)𝑑𝑑𝜔𝜔𝑑𝑑𝑐𝑐
�

�

�
�

��
�

� 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜔𝜔𝑡𝑡 𝑡 𝜔𝜔�

𝑔𝑔 𝜉𝜉� 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝑡 𝜔𝜔�

𝑔𝑔 𝜂𝜂� 𝑐𝑐𝑖𝑖𝑠𝑠 𝑐𝑐 + 𝜓𝜓� 

(7) 

where 
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𝑆𝑆���(𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔�) = 𝑆𝑆(𝜔𝜔𝜔 𝜔𝜔) ∙

⎣
⎢
⎢
⎢
⎡�𝜔𝜔2𝜔𝜔

𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔� − 𝜔𝜔)� 𝑐𝑐𝑠𝑠𝑠𝑠 �𝜔𝜔2𝜔𝜔
2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔� − 𝜔𝜔)�

𝜋𝜋2 − �𝜔𝜔2𝜔𝜔
2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔� − 𝜔𝜔)�

2

⎦
⎥
⎥
⎥
⎤

�

 (8). 

As shown above, the spectrum of the effective wave amplitude 𝑆𝑆���(𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔𝜔 �̅�𝜔)  can be calculated as a function of the 
frequency 𝜔𝜔 and the angle 𝜔𝜔 when the ship length L and the wave heading �̅�𝜔 are given. When the denominator of Eq. (8) is 
zero, in other words, the length of the relevant component wave is equal to the ship’s length, the spectrum density of the effective 
wave amplitude coincides with the spectrum density of the incident wave. Thus, this is consistent with the definition of the Grim 
effective wave. The specific density of the effective wave amplitude decreases when the wave heading increases from that of a 
pure following wave. When �̅�𝜔 − 𝜔𝜔 = 𝜋𝜋𝛼2, the spectrum density of the effective wave amplitude becomes zero. This formula 
coincides with that in Umeda & Yamakoshi 15). 

Furthermore, by using the following formula, 

��
���� (9), 

the mean value of the effective wave a can be obtained as follows:  

𝑎𝑎(𝜉𝜉�𝜔 𝜂𝜂�𝜔 �̅�𝜔𝜔  𝑡𝑡𝜔 𝜔𝜔) = � � �2𝑆𝑆𝑎𝑎(𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔�)𝑑𝑑𝜔𝜔𝑑𝑑𝜔𝜔
�

�

�
�

��
�

∙ 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜔𝜔𝑡𝑡 − 𝜔𝜔2

𝑔𝑔 𝜉𝜉𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 − 𝜔𝜔2

𝑔𝑔 𝜂𝜂𝐺𝐺 𝑐𝑐𝑠𝑠𝑠𝑠 𝜔𝜔 𝑠 𝑠𝑠� (10) 

where its spectrum 𝑆𝑆�(𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔𝜔 �̅�𝜔) is given by 

𝑆𝑆�(𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔�) = 𝑆𝑆(𝜔𝜔𝜔 𝜔𝜔) ∙
⎣
⎢
⎢
⎡𝑐𝑐𝑠𝑠𝑠𝑠 �𝜔𝜔2𝜔𝜔

2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔� − 𝜔𝜔)�
𝜔𝜔2𝜔𝜔
2𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔� − 𝜔𝜔) ⎦

⎥
⎥
⎤

�

 (11). 

When the denominator of Eq. (11) is zero, in other words, �̅�𝜔 − 𝜔𝜔 = 𝜋𝜋𝛼2, the spectrum density of the mean value of the 
effective wave becomes the spectrum density of incident waves.  

5. ESTIMATION METHOD FOR RESTORING VARIATION USING THE GRIM EFFECTIVE WAVE 
CONCEPT 

Once the Grim effective wave is given, the restoring variation due to waves can be estimated as follows. First, the righting 
arm in a regular longitudinal wave is calculated. Here, the wavelength is equal to the ship’s length, and the wave crest or trough 
is situated at the ship’s centre. The incident wave is assumed not to be disturbed by the ship, which is known as the Froude-
Krylov assumption. Then, the incident wave pressure is integrated over the ship's submerged surface. Sinkage and trim should 
be iteratively determined with the ship's weight. The profile of an incident wave propagating in the direction of 𝜉𝜉, that is, 𝜁𝜁�, 
and its pressure p are given by Eqs. (12) and (13), respectively. 

𝜁𝜁�(𝜉𝜉𝜔 𝑡𝑡) = 𝜁𝜁�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜉𝜉 − 𝑐𝑐𝑡𝑡) (12) 

𝑝𝑝(𝜉𝜉𝜔 𝜁𝜁𝜔 𝑡𝑡) = 𝜌𝜌𝑔𝑔𝜁𝜁 − 𝜌𝜌𝑔𝑔𝜁𝜁�𝑒𝑒���𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜉𝜉 − 𝑐𝑐𝑡𝑡) (13) 
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Here, the -axis is pointed downward, 𝜁𝜁� is the wave amplitude, k is the wave number and c is the wave celerity. Since the 
wave amplitude is not small in actual cases, the following practical formulae are often used.  

𝑝𝑝(𝜉𝜉𝜉 𝜁𝜁𝜉 𝜉𝜉) = 𝜌𝜌𝜌𝜌𝜁𝜁 𝜌 𝜌𝜌𝜌𝜌𝜁𝜁�𝑒𝑒�������(�𝜉�)�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜉𝜉 𝜌 𝑐𝑐𝜉𝜉) (14) 

𝑝𝑝(𝜉𝜉𝜉 𝜁𝜁𝜉 𝜉𝜉) = 𝜌𝜌𝜌𝜌𝜁𝜁 𝜌 𝜌𝜌𝜌𝜌𝜁𝜁�𝑒𝑒���𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜉𝜉 𝜌 𝑐𝑐𝜉𝜉) (15) 

where d indicates the ship's mean draught. Further, the following expression can be obtained by expanding the exponential 
function into the Taylor expansion and ignoring higher-order terms. 

                                                               𝑝𝑝(𝜉𝜉𝜉 𝜁𝜁𝜉 𝜉𝜉)
≈ 𝜌𝜌𝜌𝜌𝜁𝜁 𝜌 𝜌𝜌𝜌𝜌𝜁𝜁�(1 𝜌 𝑐𝑐𝑘𝑘)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜉𝜉 𝜌 𝑐𝑐𝜉𝜉) 

   ≈ 𝜌𝜌𝜌𝜌�𝜁𝜁 𝜌 𝜁𝜁�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜉𝜉 𝜌 𝑐𝑐𝜉𝜉)� 
(16) 

In this case, the righting arm can be hydrostatically calculated with a sinusoidal wavy surface. Comparisons among the above 
formulae and a captive model experiment indicate that Eq. (16) is sufficient for practical purposes 16) 17). 

Repeating the above calculations for different wave amplitudes, GZ and GM can be obtained as functions of the effective 
wave amplitude so that they are represented as ���𝜁𝜁����  and �𝐹𝐹�𝜁𝜁���� , respectively. Thus, if the time series of 𝜁𝜁���  is 
provided, the time series of ���𝜁𝜁���� and �𝐹𝐹�𝜁𝜁���� can also be obtained. If the probability density function of the effective 
wave amplitude is given, stochastic representative values of the effective wave amplitude, such as the significant amplitude and 
the zero-crossing mean period, can be directly obtained by the transformation of random variables 18). 

Nevertheless, in the IMO Interim Guidelines on the Second Generation Intact Stability Criteria 11), the 1/3 maximum 
amplitude of the effective wave amplitude is used for the input to the righting arm calculation in a regular wave for simplicity. 
More precisely, the 1/3 maximum amplitude obtained from the spectrum of the righting arm transformed from the effective 
wave amplitude with the narrow band assumption should be used as the amplitude of the effective wave for the righting arm 
calculation 18). Further, a probabilistic differential equation can be solved for the effective wave amplitude as a random process 
19). 

6. ESTIMATION METHOD OF PARAMETRIC ROLL BY USING RESTORING VARIATION 

Numerical simulation in the time domain is adopted in the IMO Interim Guidelines on the Second Generation Intact Stability 
Criteria 11). However, the obtained time series can exhibit roll motions other than the principal parametric roll assumed in the 
first level vulnerability criterion, such as chaos, as shown in the explanatory notes 12). Thus, expert knowledge may be required 
to handle the output properly. In addition, adding the direct roll excitation terms in the equation of motions in oblique waves 
may make the output even more complicated. Therefore, in this article, the averaging method is used to solve Eq. (17). 

𝜙𝜙� + 2𝛼𝛼𝜙𝜙� + 𝛾𝛾𝜙𝜙� � + 𝜔𝜔��𝜙𝜙 + 𝜔𝜔��𝑙𝑙�𝜙𝜙� + 𝜔𝜔��𝑙𝑙�𝜙𝜙� + 𝜔𝜔��(𝐹𝐹 + 𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔� 𝜉𝜉)�𝜙𝜙 𝜌 (1/𝜋𝜋�)𝜙𝜙�� = 𝐸𝐸 𝑐𝑐𝐸𝐸𝐸𝐸 𝜔𝜔� 𝜉𝜉 (17) 

where 𝜙𝜙  is the roll angle, 𝛼𝛼  is the linear roll damping coefficient, 𝛾𝛾  is the cubic roll damping coefficient, 𝜔𝜔�  is the 
natural roll frequency, 𝑙𝑙� and 𝑙𝑙�  are nonlinear restoring coefficients, F is the ratio of the mean value of GM variation to the 
calm-water GM and M is the ratio of the amplitude of GM variation to the calm-water GM. E represents the direct roll excitation 
moment with r as the effective wave coefficient, which can be calculated as follows: 

𝐸𝐸＝𝜁𝜁�𝑟𝑟𝑐𝑐𝜔𝜔��𝑐𝑐𝐸𝐸𝐸𝐸𝑠𝑠 (18) 

The averaging method is applied to Eq. (17), assuming the following solution form. 
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𝜙𝜙 𝜙 𝐴𝐴 ��� ���� 𝑡𝑡 𝑡 𝑡𝑡�� � � ���(𝜔𝜔�𝑡𝑡 𝑡 𝑡𝑡�) (19) 

where A, B, 1 and 2 are constants, the first term represents the subharmonic motion related to the parametric roll, and the 
second term indicates the harmonic motion related to the synchronous roll. The detailed formulae to be solved in order to 
determine A, B, 1 and 2 are provided by Sakai et al. 20). It is noteworthy here that the averaging method without the direct 
excitation term 21) 22) is still useful because the second term is not particularly significant under conditions where parametric roll 
is important. 

For the wave encounter frequency, which is the same as the frequency of restoring variation, the Interim Guidelines 11) use 
the linear wave dispersion of a regular wave whose length is equal to the ship length. Following the Grim effective wave concept, 
the wave encounter frequency should be estimated as the zero-crossing mean frequency of restoring variation estimated from 
the probability density function of restoring variation transformed from the Gaussian probability density function of the effective 
wave amplitude. However, according to a numerical study by Sakai et al. 23), the difference between the two methods seems 
small. 

7. EXAMPLE OF APPLICATION OF SIMPLIFIED OPERATIONAL GUIDANCE 

It appears to be possible to develop simplified operational guidance specifying the dangerous speed and course for a ship by 
following the methodology mentioned above and using the incident wave spectrum observed by onboard wave radar 24). An 
example of the operational guidance prepared in this manner is shown in Figs. 4 and 5 as polar charts. Here, the averaging 
method with the direct excitation term is used as the solution method, and roll damping is estimated by using Ikeda’s simplified 
method 25) with correction of its forward speed effect 26). The subject ship is the C11 class containership, which has a natural 
roll period of 25.7 s. The assumed mean wave period, T01, is 12.5 s with the significant wave heights of 5 m and 7 m. The 
Bretschneider wave spectrum with a cosine squared directional distribution is used as the wave spectrum. The polar radius 
indicates the Froude number, and the polar angle shows the ship heading from the main wave direction. The region where the 
1/3 maximum parametric roll amplitude exceeds 25° is shown in red as the dangerous zone. 

 
Fig. 4 Polar plot of simplified operational guidance for parametric rolling of the C11 class containership under a 

significant wave height of 5 m and mean wave period of 12.5 s 
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A dangerous zone exists in the operational condition where the encounter period is about half the ship's natural roll period. It 
exists at almost zero speed regardless of the heading angle, and extends to a higher speed region in beam waves. While the 
amplitude of the effective wave in regular beam waves is zero, short-crested irregular beam waves involve component waves 
encountering the ship with smaller heading angles, and thus are sufficient to cause a parametric roll. 

When the significant wave height increases, the dangerous zone becomes somewhat broader. At the significant wave height 
of 5 m, an increase in the ship speed to a Froude number of 0.05 or higher in head waves effectively prevents parametric roll. 
At the significant wave height of 7 m, an increase to a Froude number of 0.07 or higher in head waves effectively prevents 
parametric roll. 

 
Fig. 5 Polar plot of simplified operational guidance for parametric rolling of the C11 class containership under a 

significant wave height of 7 m and mean wave period of 12.5 s 

8. CONCLUSION 

A method for developing simplified operational guidance for parametric rolling specifying the dangerous ship speed and 
dangerous course in short-crested irregular waves is proposed as an extension of the IMO vulnerability criteria using the 
generalised Grim effective wave concept. Examples of its application are provided as polar plots. 
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