

CO₂ Capture Technology of Mitsubishi Heavy Industries

— Results to Date and Application to Onboard Systems for Ships —

Noriaki SENBA*, Takahito YONEKAWA**

1. INTRODUCTION

In July 2023, the International Maritime Organisation (IMO) extensively revised its GHG Strategy and set the target for 2050 at net zero, strengthened from the previous target of 50%¹⁾. Shipping is a so-called “hard to abate” sector, i.e., decarbonization is more difficult in the shipping sector than in other sectors. However, GHG emissions from shipping account for about 3% of total GHG emissions and are therefore not negligible. Mitsubishi Heavy Industries, Ltd. (MHI) began the development of technology for CO₂ capture from combustion flue gas with Kansai Electric Power Co., Inc. in 1990, and delivered the first commercial plant to a Malaysian fertilizer company in 1999. As of August 2025, a total of 18 commercial CO₂ capture plants are currently in service around the world. MHI’s CO₂ capture plant is applicable to various types of combustion flue gases, including heavy oil, coal, and natural gas, and the recovered CO₂ is used in a variety of applications, such as enhancement of fertilizer and methanol production, general uses such as dry ice, and EOR (Enhanced Oil Recovery) to increase oil production. Most notably, MHI delivered the world’s largest CO₂ capture plant (4776 metric tonnes per day) for a coal-fired power plant to Petra Nova Parish Holdings LLC, U.S. at the end of December 2016. MHI continues to promote research and development of CO₂ capture technologies with the aims of improving reliability, reducing the cost of future CO₂ capture plants, and increasing the application of its technology.

2. MHI’S R&D AND COMMERCIAL EXPERIENCE

MHI’s CO₂ capture technology was commercialized as the KM CDR Process and uses a proprietary solvent, KS-1TM²⁾. This process can capture more than 90% of the CO₂ from a flue gas stream and produce CO₂ with a purity of more than 99.9%. Steam consumption is also lower than that of other conventional technologies. Fig. 1 shows the schematic flow of the KM CDR Process and the process description.

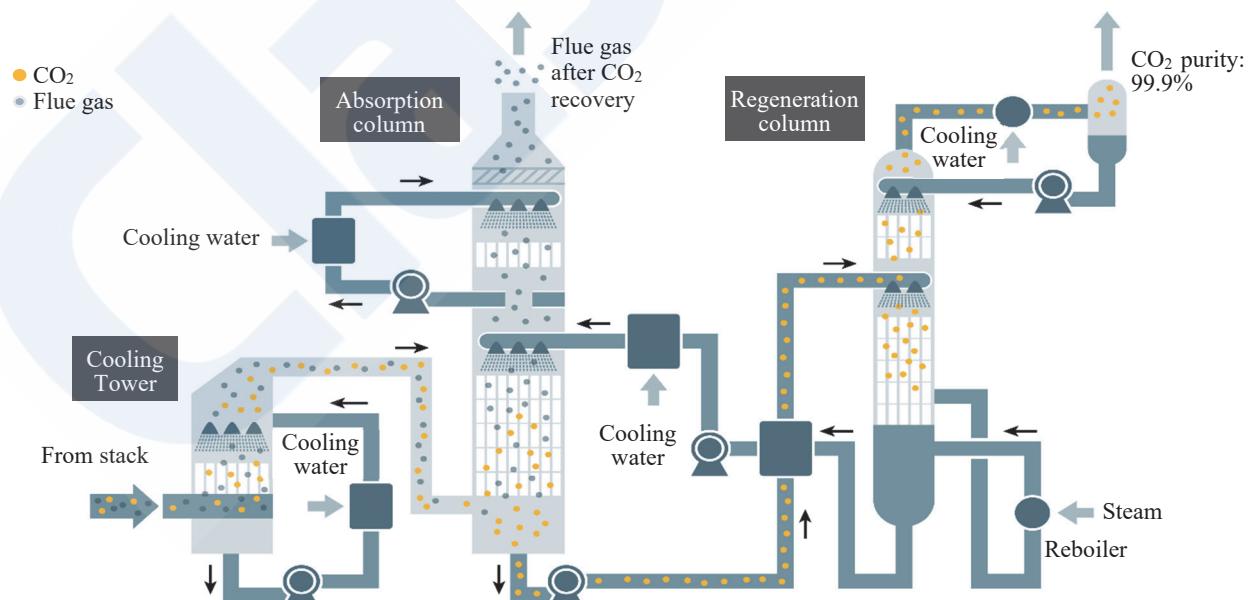


Fig. 1 MHI’s CO₂ capture process (KM CDR ProcessTM)

* Ecosystem Research Promotion Office, Research & Innovation Center, Mitsubishi Heavy Industries, Ltd.

** CCUS Technology Development Department, GX Solutions, Mitsubishi Heavy Industries, Ltd.

Flue gas containing CO₂ is introduced into the flue gas quencher, where it is cooled, and is then pressurized by a blower installed downstream of the quencher, and delivered to the CO₂ absorber filled with packing. The flue gas enters the bottom section of the absorber and reacts with the alkaline absorption solvent on the packing surface. The solvent absorbs the CO₂ from the flue gas, and the remaining flue gas is discharged into the atmosphere. The solvent, now rich in CO₂, is transferred to the regenerator, where the CO₂ is separated from it by steam stripping, resulting in regeneration of the solvent (ready for re-use). Use of MHI's latest energy-saving regeneration process can considerably reduce the amount of steam required in this process, reducing operational expenditure (OPEX).

In 2016, MHI successfully delivered a highly-reliable CO₂ capture plant (capacity: 4776 tpd) for the Petra Nova Project. The Petra Nova Project is jointly owned by NRG Energy Inc., a U.S. Independent Power Producer, and JX Nippon Oil & Gas Exploration Corporation. The plant started commercial operation at the end of December 2016. Table 1 details the plant specifications, and Fig. 2 is a photo of the completed plant. The CO₂ captured from a 240MW equivalent slipstream of flue gas is compressed by the CO₂ compressor, transferred through a 130km pipeline, and injected into an oil field. As a result of these efforts, oil production at the oil field was expected to increase significantly from about 300 barrels per day when CO₂ injection began. As of October 2017, oil field production had increased to roughly 4000 barrels per day³⁾.

Table 1 Overview of plant for EOR project in Texas (USA)

Item	Content
Plant location	Thompsons (Texas, USA)
Gas source	NRG WA Parish power plant 610 MW coal-fired thermal power plant
Process	KM CDR Process TM
Solvent (absorbent solution)	Amine-based solvent KS-1 TM
Plant scale	240 MW equivalent
CO ₂ capture rate	90%
CO ₂ capture amount	4776 t/d

Fig. 2 Appearance of CO₂ capture plant for EOR project in Texas (USA)

Fig. 3 shows the facility configuration of this CO₂ capture plant and other related facilities. The CO₂ capture plant is located downstream of existing air quality control systems (AQCS) to limit impurities in the flue gas. The electricity and steam required for the CO₂ capture plant are supplied from a cogeneration unit consisting of a gas combustion turbine connected to an electrical generator and a heat recovery steam generator. As a result, CO₂ can be recovered without decreasing the existing power generation output from the host unit or affecting how its power is dispatched to the power market. The compression process employs the world's largest eight-stage integrally-geared CO₂ compressor, which was supplied by Mitsubishi Heavy Industries Compressor Corporation. A dehydrator is installed in the CO₂ compression process to meet the moisture specifications of the

CO₂ pipeline.

At a coal-fired power plant, the operational load is adjusted according to daily electric power demand. Boiler operation changes constantly, and with it, flue gas conditions such as the flow rate and CO₂ concentration also change. MHI developed an automatic load adjustment control system for the CO₂ capture plant to maintain optimized operation following the dynamic flue gas condition of the host coal-fired plant. Use of this control system allows operation of the CO₂ plant without constant attention by the CO₂ capture plant operator⁴⁾.

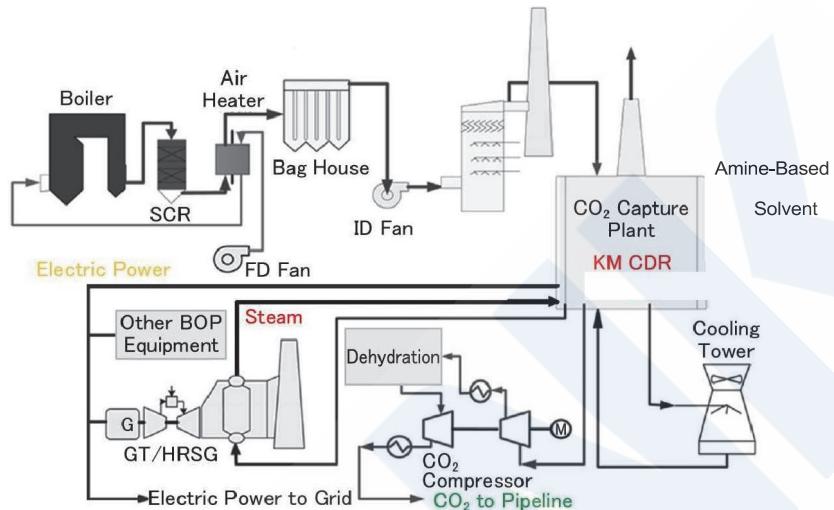
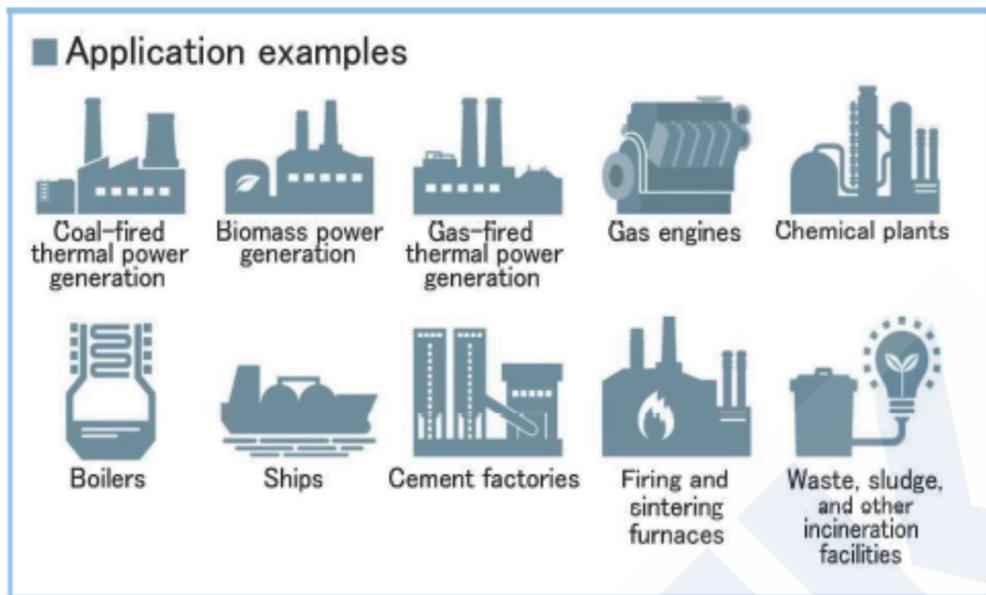


Fig. 3 System configuration of CO₂ capture plant for EOR project in Texas (USA)

3. FEATURES OF SMALL-SCALE CO₂ CAPTURE SYSTEMS


MHI has delivered a proprietary CO₂ capture process, the KM CDR ProcessTM, to coal-fired power plants and chemical plants. The scale of the plants delivered so far is approximately 500t-CO₂/day or larger. Based on this technology, MHI is now developing small-scale CO₂ capture systems to realize concurrent CO₂ reductions while also responding to the reduction needs of small-scale CO₂ emission sources.

Although the basic process of the small-scale CO₂ capture system under development is the same as that of large-scale plants, the following features are required in a small-scale system:

- (1) Applicable to many emission sources
- (2) Installable in a limited area
- (3) Operable without full-time operators

In order to respond to various inquiries, we adopted a standard design for small-scale systems, and not a design tailored to each customer's specifications, like the designs used in conventional large-scale plants. A system with a compact design was realized by modularization to enable installation in a smaller area. Modularization has the advantages of reducing field works and allowing an early start of system operation, and also eliminates the need for storage sites for construction materials, etc. The small-scale system is equipped with an automatic operating and remote monitoring system, allowing operation without a full-time operator.

In addition to MHI's conventional customers, such as thermal power plants and chemical plants, these systems are expected to be applied in various industrial sectors such as biomass power plants, cement factories, steel mills, gas engines, waste incineration facilities, etc. (Fig. 4), where efforts to reduce CO₂ are expected to accelerate in the future⁵⁾.

Fig. 4 Examples of applications of small-scale CO₂ capture plants

4. DEVELOPMENT OF ONBOARD CO₂ CAPTURE SYSTEMS FOR SHIPS

MHI is also developing onboard CO₂ capture systems to reduce CO₂ emissions from ships. This chapter introduces our latest initiative in this area, the onboard CO₂ capture system demonstration project CC-Ocean (Carbon Capture on the Ocean)^{*1}, which was carried out jointly with Kawasaki Kisen Kaisha, Ltd. and Nippon Kaiji Kyokai⁶⁾.

To verify the CO₂ capture technology under offshore conditions and formulate the requirements for onboard use, in this project, a demonstration test of a small-scale CO₂ capture demonstration plant (hereinafter, demo-plant) was conducted under commercial operating conditions by installing the demo-plant on the coal carrier “CORONA UTILITY” operated by Kawasaki Kisen, Ltd. This demonstration under actual commercial conditions was a “world’s first.” The project was conducted over a two-year period. A HAZID evaluation of the demo-plant and a safety evaluation of the equipment and system were conducted by Nippon Kaiji Kyokai (ClassNK), after which the demonstration plant was fabricated, installed on the coal carrier, and operated in an offshore environment for approximately six months to measure and check its performance. The CO₂ capture system of the demo-plant installed on the coal carrier was originally a unit for exhaust gas treatment employing the chemical absorption method at an onshore plant, and was converted for onboard installation (Fig. 5).

Fig. 5 Test ship “CORONA UTILITY” and demo-plant (white container)

In this project, the performance of the demo-plant exceeded the planned values for the CO₂ capture amount, CO₂ capture rate, and captured CO₂ purity, and the equipment could be operated and maintained by the crew of the coal carrier without any problems. The effects of engine load fluctuations and ship motion on CO₂ capture performance and the effects of the ship’s exhaust gas on the CO₂ absorbent were also verified. In addition, guidelines for safety measures associated with ship operation, including measures against leakage of the CO₂ absorbent, ventilation concepts for equipment installation areas, etc., were

established as requirements for operating CO₂ capture systems in an offshore environment.

Based on the knowledge obtained and the technical issues discovered as a result of this demonstration, in the future, we will promote efforts toward commercialization of the onboard CO₂ capture system by establishing the concept of a total system, including onboard CO₂ liquefaction and storage, and optimizing the system as an offshore system, considering unloading the onboard CO₂ to land.

5. CONCLUSION

The IMO has extensively revised its GHG Strategy and set the target for 2050 at net-zero carbon emissions, which was strengthened from the previous target of 50%. Mitsubishi Heavy Industries, Ltd. (MHI) recognizes that reduction of GHG emissions is a major issue, and promotes the development of technologies for this purpose not only by the company itself, but also in cooperation with others companies in the Mitsubishi Heavy Industry Group and external organizations. We will continue developing MHI technologies to contribute to the transition to net-zero emissions in international shipping.

REFERENCES

- 1) Nippon Kaiji Kyokai (ClassNK), Roadmap to Zero Emission from International Shipping (2023), <https://www.classnk.or.jp/>
- 2) Takashi KAMIJO et al., Mitsubishi Heavy Industries Technical Review, Vol. 50, No. 1, (2013), pp. 27-32
- 3) U.S. Department of Energy press release, <https://energy.gov/fe/articles/doe-supported-petra-nova-captures-more-1-million-tons-co2>
- 4) Takuya HIRATA, Mitsubishi Heavy Industries Technical Review, Vol. 55, No. 1, (2018), pp. 42-47
- 5) Minori OKUBO, Journal of the Gas Turbine Society of Japan, Vol. 53, No. 1 (2025), pp. 2-7
- 6) Taichi TANAKA, Mitsubishi Heavy Industries Technical Review, Vol. 59, No. 2, (2022), pp. 1-6